Закалка металла

28. Закалка. Виды закалок.

Закалка – нагрев стали выше температуры фазовых превращений с последующим охлаждением по определённому режиму для получения нужной структуры и повышения твердости и прочности.

Процесс закалки стали заключается в ее нагреве до определенной температуры (на 30…50° выше линии GSKпо диаграммеFе -Fе3 С), выдержке и последующем быстром охлаждении в воде, масле, расплавленных солях или других средах.

Доэвтектоидные стали надо на­гревать примерно на 30. 50° выше критической точки Ас3 (линияGS):tзак= Ас3 + 30…50°С

Заэвтектоидные стали следует нагревать под закалку выше Ас1 (линияSK) на 30. 50°.

Масла имеют скорость охлаждения в интервале мартенситного превращения в 10 раз меньшую, чем вода, что уменьшает возможность возникновения дефектов при закалке.

Существуют следующие виды закалок:

Закалка в одном охладителе — самая распространен­ная — нагретое до температуры закалки изделие погружают в охлаж­дающую среду до полного охлаждения. (угле­родистые стали в воде, а легированные стали — в масле). Этот способ прост, но может вызвать значительные внутренние на­пряжения.

Прерывистая закалка (закалка в двух средах) при­меняется для предупреждения появления внутренних напряжений в изделии. Этот способ используют при закалке крупных изделий из конструк­ционной углеродистой и низколегированной стали. Нагретое до нужной температуры изделие сначала резко охлаждают в воде до 300. 200 °С, затем переносят в масло или на воздух, где оно медленно охлаждается. Недостаток — трудность регулирования времени вы­держки.

Ступенчатая закалка — на­гретое изделие охлаждают, погружая в соляную ванну, температура которой превышает температуру начала мартенситного превращения данной стали. Затем изде­лие выдерживают в ванне для выравнивания темпера­туры по всему его объему и охлаждают на воздухе до нормальной температуры, что снижает внутренние на­пряжения. Её приме­няют для тонких стальных изделий из углеродистой стали.

Закалка с самоотпуском (закалка по цветам побежалости) заключается в том, что изделие охлаждают от температуры закалки в охлаждающей среде только в течение времени, которое необходимо для его прока­ливания на определенную глубину. Дальнейшее охлаж­дение идет на воздухе. При этом осуществляется отпуск за счет теплоотдачи из внутренних слоев изделия. Дан­ный способ применяют для закалки ударного инстру­мента (зубила, кузнечный инструмент и др.).

Поверхностная закалка применяется для увеличения износостойкости, твёрдости и прочности деталей, воспринимающих ударную нагрузку (зубчатые колеса, валы и др.). Она включает нагрев по­верхностного слоя изделия до температуры закалки и охлаждение для получения мартенситной структуры в поверхностном слое при сохранении вязкой сердцевины.

Различают следующие виды нагрева при поверхност­ной закалке: нагрев пламенем газовой горелки и нагрев токами высокой частоты.

29. Отпуск. Виды отпуска.

Отпуск — это нагрев закаленной стали до температуры ниже критической Ас1 , выдержка при этой температуре и последующее охлаждение (обычно на воздухе).

Различают следующие виды отпуска: низкий, средний, высокий.

Низкий отпуск — нагрев закаленной стали до 250°С для снижения внутренних напряжений при сохранении высокой твердости. Его применяют для инструментов и изделий, которые должны обладать высокой твердостью и износостойкостью. Получаемая структура – мартенсит отпуска.

Средний отпуск — нагрев закаленной стали до 350. 450°С, который приводит к пони­жению твердости и повышению вязкости стали по срав­нению с низким отпуском. Получаемая микроструктура троостит. Его применяют для пру­жин, штампов, рессор, ударного инструмента и др.

Высокий отпуск — нагрев закаленной стали до 450. 650°С, который способствует по­лучению наибольшей вязкости при сохранении доста­точно высокой прочности. Твердость закаленной стали сильно снижается и обра­зуется структура сорбит. Закалку деталей машин на мартенсит с последую­щим высоким отпуском на сорбит назы­вают улучшением. Сорбит отпуска с зернистой формой цементита имеет более высокие показатели прочности и вязкости, чем сорбит закалки с пластинчатой формой цементита.

Обработка холодом — заключается в обработке закаленных изделий холодом при температурах порядка — 80°С и ниже. Об­работка холодом основана на том, что остаточный аустенит, находящийся в структуре закаленной стали при низких температурах, распадается в результате возникновения внутренних на­пряжений. Данный метод повышает твердость режущего инструмента, стабилизирует размеры измерительных ин­струментов и др. В промышленности применяют спе­циальные установки, в которых охладителями служат жидкий кислород (-183 °С), жидкий азот (-195 °С), смесь из твердой углекислоты (сухой лед) с денатурированным спиртом (-78,5 °С).

Как закалить металл в домашних условиях?

September 5, 2016

Многие интересуются, как правильно закалить металл в домашних условиях и в каких случаях требуется этот процесс? Закаливание изделий из этого материала проводят при необходимости повышения его крепости. К примеру, для упрочнения кромок для резки кухонных принадлежностей (нож, секатор) или же инструментов (стамеска, зубило и т.д.) К тому же металл приобретает некоторую долю пластичности, что облегчает обработку материала. С этим правилом хорошо знакомы кузнецы. В статье будет описано, как закалить металл в домашних условиях.

Закалка металла

Для чего нужно закаливание?

Закаливание металла способствует увеличению твердости изделия примерно в 4 раза. В этом случае предмет из этого материала с легкостью может разрезать стеклянную поверхность. Закаливание требуется из-за недостаточной крепости предмета или наоборот. В первом случае изделия из металла будут заминаться, а во втором — крошиться.

Проверка уровня закалки металлического изделия

Для проверки уровня закалки изделия из металла следует взять напильник и провести инструментом по краю предмета для резки, к примеру, топора или ножа. Если вы чувствуете, что напильник начинает приставать или липнуть к металлу, то это свидетельствует о том, что изделие закалено недостаточно. При этом его край будет мягкий и податливый.

Если же инструмент легко отходит от предмета и создается ощущение, что он его гладит, а рука не чувствует неровностей, то это означает, что металл закален излишне.

Закалить металл в домашних условиях возможно. При этом не следует обращаться к сложным технологиям. Процесс проводится своими руками.

Закалка металла

Следует помнить, что процессу не подлежат малоуглеродистые стали. А вот достичь увеличения прочности изделий из углеродистых или инструментальных материалов реально.

Как проводится закалка?

Технология закалки предполагает два процесса — нагревание металлического изделия до высокой температуры и последующее охлаждение.

Термическое обрабатывание поверхности целесообразно в том случае, если:

  • есть необходимость придания металлу дополнительной прочности;
  • требуется повышение уровня пластичности, к примеру, для последующей горячей ковки.

Цена закаливания металлического изделия на профессиональном уровне составляет 200 руб. за 1 кг. Обработка огнем мелких деталей обходится дешевле. Цена за эту услугу равна 20 руб.

Как закалить металл в домашних условиях? Необходимо ознакомиться с некоторыми нюансами этого дела.

Закалка металла

Нагрев должен отличаться равномерностью. На металле не должно возникать пятен черного или синего цвета. Нельзя нагревать изделие до крайнего показателя температуры. О том, что процесс протекает правильно, свидетельствует появление яркого красного цвета.

Какое оборудование употребляется для закалки?

К примеру, для того чтобы закалить метал в домашних условиях в форме сверла, применяется электрическая или термическая печь, лампа для паяния или же костер. Что подойдет в конкретном случае зависит от того, какой показатель температуры требуется для обрабатываемого материала.

Охлаждение разных инструментов

Правила охлаждения инструментов могут быть разными. Процесс можно осуществить в один или несколько приемов. Все зависит от типа металла.

Как закалить металл не по всей поверхности, а лишь в определенном месте? В этом случае применяется струйный вид закалки. Он подразумевает направление струи холодной воды на предмет точечно.

Если проводится действие с одним охладителем, то требуются специализированные приспособления в виде бочки или ведра. С этой целью применяют даже ванну. Такой способ охлаждения подходит для предметов на основе углеродистой или легированной стали.

Если для понижения температуры изделия требуется схема охлаждения, включающая две ступени, то употребляются разные среды. Этот процесс обеспечивает отпуск металла. Изначально сверла или диски подвергаются охлаждению водой, затем посредством машинного или минерального масла. Охлаждение при его помощи является второй ступенью процесса, так как есть риск воспламенения под влиянием высокой температуры.

Применение воды для охлаждения

Основной жидкостью для охлаждения является вода. Если в нее добавить немного соли или мыла, то скорость охлаждения поменяется. Поэтому бак для закалки нельзя использовать для мытья рук. Для обеспечения одинакового показателя твердости на металлической поверхности следует поддерживать температуру жидкости 20 — 30 °С. Нельзя часто ее менять в баке. Запрещается проводить охлаждение изделия в проточной воде.

Минусом закаливания при помощи воды является появление на поверхности металла множества трещин. Таким способом следует подвергать процессу предметы простой формы или же цементированные.

Что применяется для закаливания деталей сложной формы?

Как закалить металл сложной формы? Для легированной стали используется пятидесятипроцентный раствор каустической соли в холодном виде или подогретом до 50 — 60 °С. Детали, подогретые в соляной ванне и прошедшие в ней закалку, выходят светлыми. Нельзя чтобы температура раствора была выше 60 °С.

Пары, которые возникают при закаливании, несут вред здоровью, поэтому ванна обязательно должна быть оснащена вентиляционной вытяжкой.

Как осуществляется закаливание легированной стали?

Как закалить металл? В домашних условиях легированную сталь подвергают процессу в ванне с минеральным маслом. Тонкие предметы из углеродистой стали закаливают этим же способом. Плюсом масляных ванн является то, что скорость охлаждения не находится в зависимости от температуры масла. Оно будет протекать одинаково быстро при любом ее показателе.

Как закалить металл в масле правильно? В такую ванну не должна попадать вода, так как это может спровоцировать появление на поверхности металлического предмета трещин. Замечено, что если масло разогрето до температуры 100 °С, то попадание воды не вызовет растрескивания изделия.

Закалка металла

Минусы масляной ванны

  • При закаливании выделяются ядовитые газы.
  • На предмете образуется налет.
  • Масло может воспламениться.
  • Качество закалки в масляной ванне постепенно снижается.

Как проводится отпуск металла?

Отпуску подвергаются все детали, прошедшие закалку. Это снимает внутреннее напряжение. В результате этого процесса понижается твердость и повышается пластичность материала.

Как отпустить закаленный металл? В зависимости от нужной температуры процесс проводится:

  • в ваннах с маслом;
  • в ваннах с селитрой;
  • в печах с воздушной циркуляцией;
  • в щелочных ваннах.

Закалка металла

От чего зависит выбор температуры отпуска?

Как ослабить закаленный металл правильно, что следует учитывать? Важным фактором является температура отпуска. Она зависит от типа стали и требуемого показателя твердости изделия. К примеру, изделие для которого требуется показатель HRC 59 – 60, подвергается отпуску при температуре 150 — 200 °С. В этом случае внутренне напряжение понижается, а твердость практически не меняется.

Быстрорежущую сталь опускают при температуре 540 — 580 °С. Такой процесс получил название вторичного отвердения. Его результатом является повышение твердости изделия.

Металл закаляется на цвет побежалости. Его нагревают на электрической плитке, в печах или горячем песке. Пленка окиси, появляющаяся при нагревании, окрашивается в разные цвета. При этом поверхность металлического изделия очищается от окалины, нагара и масла.

После отпуска металл, как правило, охлаждают на воздухе. Хромоникелевые изделия охлаждают в воде или масле, так как медленное остывание этих марок приводит к отпускной хрупкости.

Как закалять сталь на открытом огне?

Как закалить металл на огне? Для легкого проведения процесса закаливания металла в домашних условиях следует развести костер и подготовить две тары большой емкости. В огне должно присутствовать множество раскаленных углей.

В одну емкость следует залить дизельное или моторное масло, а в другую чистую воду. Лучше если она будет колодезной. Изначально подготавливается инструмент, при помощи которого будет удерживаться раскаленный до предела металл. Употребляют кузнечные клещи. Но если их нет, то можно использовать что-либо аналогичное.

После проделывания предварительных работ, сверла из металла или же другие инструменты кладутся в центр пламени на горячие угли. Угольки белого цвета гораздо горячее остальных. За процессом закаливания нужно наблюдать внимательно. Пламя костра должно быть малинового цвета. Если огонь приобретает белый цвет, то есть угроза перегревания и даже сгорания металла.

Необходимо следить за тем, чтобы малиновый цвет был распределен по все площади костра равномерно. На кромке изделия из металла не должно появляться пятен черного цвета. Если на материале появляются синие пятна, то это свидетельствует о чрезмерном размягчении материала и его излишней пластичности. Этого допускать нельзя.

После прокаливания в огне металлического изделия его следует убрать из очага высокой температуры. Раскаленный предмет опускается в емкость с маслом много раз с интервалом в 3 секунды. Промежуток времени постепенно увеличивают. Медлить на этом этапе нельзя. Операция проводится скоро и резко. Изделие окунается в масло до тех пор, пока его цвет перестанет быть ярким и насыщенным.

Затем предмет погружается в ведро с водой, которую необходимо немного взбалтывать. На этом этапе следует быть предельно острожными, так как капли масла на ноже или топоре могут подвергнуться осушению при погружении в водную среду. Сверла следует опускать в жидкость толстым концом.

Как правильно закалить металл, вам уже известно. Если придерживаться всех рекомендаций, то процесс принесет желаемый эффект.

Закалка металла

В каких случаях прибегают к применению электрической печи?

В домашних условиях приходится закаливать изделия из цветных металлов или стали. В этом случае потребуется очень высокая температура до 900 ºС и выше.

Разогреть изделие из металла до такого показателя в состоянии только электрическая или муфельная печка. Последнюю можно изготовить своими руками, а вот электрическую сделать невозможно.

Как изготовить муфельную печь?

Как закалить металл в домашних условиях при помощи муфельной печи, изготовленной своими руками? Такое приспособление станет очень нужным в домашнем хозяйстве. Оно позволят провести термическую обработку изделий из металла без лишних манипуляций. Для изготовления печи своими руками требуется огнеупорная глина, используемая для покрытия. Из этого материала создается камера толщиной не больше 1 см. Ее размеры должны составлять 210х105х75мм.

Осуществляя лепку муфельной печи своим руками, прибегают к использованию к заранее приготовленной формы из картона. Чтобы она не липла, ее пропитывают парафином.

Глину намазывают на форму с изнанки. В этом случае во время просушивания она не даст усадки. При затвердевании материал сам отойдет от граней формы. Огнеупорная глина может стать основой двери печи.

Самодельной муфельной печи надо дать просохнуть на открытом воздухе. Затем ее просушивают до конца в печи при 100 ºС. Двери и камера обжигаются постепенно при увеличении температуры до показателя 900 ºС.

Деталям следует дать остыть, не вынимая их из печи. Затем к ней присоединяется дверка. Ее поверхность шлифуется при помощи напильника.

На камеру наматывается 18 м проволоки из нихрома. Толщина ее должна составлять 0,75 мм. Первый и последний витки необходимо скрутить. Чтобы не возникло замыкание, расстояние между витками обмазывается глиной. На сухой слой материала надо намазать еще один слой толщиной 12 см.

Муфельная печь, сделанная своими руками, заключается в металлический каркас, размер которого составляет 270х200х180 мм.

Закалка металла

Для облегченной сборки корпуса его следует сконструировать с двумя съемными крышками, фиксируемыми посредством винтов.

К передней крышке на петлю крепится дверца. Она должна открываться в горизонтальном направлении. На эту дверку при помощи болтов и прокладок нужно установить керамическую деталь.

Все зазоры замазываются глиной, а края проволоки убираются на заднюю крышку каркаса.

Затем делается разъем и стандартный шнур с вилкой. Все отверстия между нагревающими деталями и каркасом заполняются асбестовой крошкой.

Для установки термопары и получения возможности отслеживать процесс закалки металла в камере необходимо просверлить два отверстия. Диаметр первого должен составлять 1 см, а второго 2 см. К ним крепятся закрывающиеся шторки из металла.

Вес самодельной муфельной печи составляет 10 кг. Она раскаляется до показателя температуры 900 ºС в течение часа. При ее помощи можно облегчить процесс закаливания сверл, напильников, матриц и множества других металлических изделий.

Муфельное оборудование для закалки металла не является единственным устройством. С этой целью применяют камерное приспособление, электрическую или термическую печь, а также печь-ванну. Сделать муфельную печь своими руками выгоднее, чем приобрести готовое оборудование. К примеру, средняя цена такого приспособления на рынке составляет 40 000 руб.

Закалка металла

20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.

Закалка металла

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Закалка металла

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Закалка металла

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

Закалка металла

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Закалка металла

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Оборудование и материалы для закалки металлов

Закалка металла

Металлы и их сплавы закаливают для повышения твёрдости. Этот процесс имеет многовековую историю – от кузнечного горна и ведра с водой, в которое с шипением опускался раскалённый клинок, до высокотехнологичного оборудования современных металлургических производств.

Закалка металлов и сплавов

Суть закалки состоит в том, что материал нагревают до той температуры, при которой он приобретает новые свойства, а потом резко охлаждают, фиксируя это состояние. Закаливают сталь, а также сплавы цветных металлов (бериллиевую бронзу, например). После закалки металл подвергают отпуску. суть в том, чтобы убрать хрупкость, придав эластичность.

Наиболее широко разработаны процессы закалки стали – с разнообразным оборудованием, материалами, технологиями.

Сталь – сплав железа с легирующими добавками и углеродом, нагревают до той температуры, при которой атомы железа и добавок выстраиваются в кубические гранецентрированные решётки. Внутри этих структур «растворены» атомы углерода. Это аустенит.

Затем материал охлаждают так, что решётки железа с добавками становятся кубическими, а атомы углерода выстраиваются в прямоугольные «пакеты», расположенные между кубическими структурами. Это мартенсит, имеющий игольчатое строение и высокую твёрдость.

Так происходит закалка стали. Основные операции: раскалить и остудить – обеспечивает соответствующее нагревательное оборудование и охлаждающие материалы.

Нагревательное оборудование

В зависимости от глубины и степени закалки, формы и размеров закаливаемой детали применяют разные способы её разогрева.

ТВЧ-установка

создаёт высокую температуру за счёт электромагнитной индукции: средне- и высокочастотный переменный ток, который проходит по петлям индуктора, создаёт вихревые токи на поверхности закаливаемого изделия, расположенного рядом с ним, и нагревает её.

Чем выше частота переменного тока, тем больше раскаляется поверхность изделия.

Понизив частоту, можно достичь нагрева более глубоких участков.

Однако детали большого сечения, а также имеющие сложную поверхность, обработать этим способом не удастся.

Таким образом, к преимуществам установок ТВЧ относится. экономичность и скорость нагрева, отсутствие окалины, деформаций и трещин при закалке, автоматический контроль и механизация процесса.

Недостатками является неэффективность при работе со сложными профилями и массивными деталями.

Соляная электродная ванна

нагревает детали за счёт электролиза соляного расплава. Она представляет собой наполненную солью ёмкость из керамики или металла. В неё погружены электроды, а также электронагреватель, который производит пуск ванны, расплавляя соль. Ванна защищена корпусом и зонтом, расположенным над ней. Такое оборудование обеспечивает быстроту и равномерность нагрева деталей, погружаемых в расплав.

Преимуществами являются. скоростной нагрев, равномерность поля температур (погрешность не выше 1ºС), частичный нагрев (если в ванну погружён только нужный участок детали), отсутствие окисления поверхности металла, высокие температуры (от 800 до 1300ºС, в зависимости от применяемой соли).

К недостаткам относится. выделение вредных испарений с поверхности расплавленной соли, а также взрывной выброс расплава, если в него попадает вода или загружаются влажные изделия.

Камерная печь имеет плотно закрывающийся отсек с обогревом и хорошей теплоизоляцией, во внутреннем пространстве которого создаются высокие температуры — от 800 до 1400ºС. В зависимости от того, чем производится обогрев, камерные печи бывают электрическими, нефтяными и газовыми.

Преимущества таких печей– равномерный нагрев, разработанные механизмы регулирования температуры и управления процессом.

Недостаток – образование окалины в результате взаимодействия металла с атмосферным воздухом при нагреве до высоких температур.

В дополнительно герметизированных печах с устройствами для нагнетания в рабочую камеру защитного газа (аммиак, лёгкие углеводороды) окалина не образуется.

Печь непрерывного горения

В том случае, если технологический процесс предусматривает постоянное закаливание деталей, применяют непрерывно действующие печи. В них, в соответствии с требованиями технологии, производят нагрев и выдержку изделий при заданной температуре в течение контролируемого времени.

По способу подачи изделий на закалку печи непрерывного горения подразделяются на конвейерные, толкательные и протяжные .

Процессы нагрева и выдержки автоматизированы и управляемы. Вместе с тем, закалка в таких печах (без защитного газа) сопряжена с образованием окалины и обезуглероживанием стали .

Вакуумная печь отличается от обычных камерных тем, что внутри неё, помимо высокой температуры, создаётся вакуум – до 5х10 -6 мбар. В результате снимаются проблемы, связанные с образованием окалины, обезуглероживанием и науглероживанием стали .

Эти печи, снабжённые, помимо нагревателей и теплоизолирующего корпуса, вакуумным насосом, выпускаются в промышленном, более масштабном варианте и с относительно небольшими габаритами – для исследовательских, лабораторных целей.

Материалы для закаливания: среда охлаждения.

При закалке изделие после нагрева требуется охладить. Для этого разогретую деталь погружают в среду с более низкой температурой. Такие среды могут быть жидкими и газообразными.

является часто используемой для охлаждения стали жидкостью. Если в такой воде присутствует даже малое количество солей либо моющих средств, параметры охлаждения меняются. Поэтому вода должна быть чистой. Частой её замены не требуется. Температура воды должна находиться в интервале от 20 до 30 градусов. Недопустимо охлаждение закаляемой детали в проточной воде.

Недостатком водного охлаждения является возникновение трещин и деформация при этом процессе. Поэтому закаливают в воде преимущественно несложные по форме изделия.

Водный раствор каустической соды

применяют, чтобы закалить изделия сложной конфигурации, изготовленные из конструкционной стали. Концентрация раствора – 50%. Он может быть холодным либо нагретым до 50-60ºС. При такой закалке образуются едкие пары, поэтому рабочее пространство должно обязательно иметь эффективную вытяжную вентиляцию.

Используют также горячие концентрированные растворы щелочейNaOH иKOH .

Минеральное масло

используют при закалке стали с легирующими добавками. В масляной ванне скорость, с которой охлаждается деталь, не зависит от температуры масла. Если масло нагрето до ста градусов и ниже, при попадании воды деталь может растрескаться, но при температуре масла выше 100ºС трещины не образуются.

Масляная закалка, вместе с тем, имеет недостатки: образуются вредные газы; изделие покрывается налётом; закаливающая способность постепенно снижается. Кроме того, минеральные масла легко воспламеняются.

Растворы солей

Горячие (от 150 до 500ºС) расплавы солей и их концентрированные растворы применяют для ступенчатой и изотермической закалки. При этом используются нитраты и нитриты калия и натрия. Интенсивность охлаждения в таких ваннах можно повышать, дополнительно вводя воду. Она поступает в глубину расплава/раствора, частично испаряется, частично поглощается солью. При этом в условиях данной температуры соль поглощает строго определённое количество воды. В результате создаются стабильные условия охлаждения. Температура ванны и содержание в ней воды контролирует автоматика.

также может охладить раскалённую сталь. С этой целью применяют обдувку изделия осушённым воздухом, подаваемым с помощью компрессора или вентилятора. Кроме того, используют охлаждение с помощью потоков азота, аргона. Продувание изделия инертным газом особенно эффективно при охлаждении в вакуумных печах.

Полное описание процесса закалки

Рассмотрим закалку стального изделия на конкретном примере.

Оборудование: камерная печь. Охлаждающий материал: масло.

Допустим, есть изделие из нержавеющей стали марки 40Х13.

Температура закалки для неё составляет 1050-1100ºС.

Проводят расчёт скорости нагрева. Этот расчёт учитывает форму изделия, расположение его в печи, а также нагревательную среду.

Изделие помещается в камерную печь и нагревается до нужной температуры с рассчитанной скоростью.

По достижении назначенной температуры деталь выдерживается в этих температурных условиях определённое время, чтобы произошёл полный её прогрев и нужные структурные превращения металла.

Затем изделие извлекают и постепенно, круговыми движениями, погружают, до полного остывания, в ванну с минеральным маслом — подходящей охлаждающей средой для легированных сталей, к которым относится 40Х13.

Место, где стоит охлаждающая ванна, должно иметь вытяжную вентиляцию.

Правильно подобранный режим закалки с использованием соответствующего оборудования и материалов позволяет значительно повысить твёрдость металлических изделий.

Будь первым, оставь комментарий

Как самому закалить металл в домашних условиях

Термообработка металлов – это один из основных способов улучшения их механических и физико-химических характеристик: твердости, прочности и других.

Одним из видов термообработки является закалка. Она успешно применялась человеком кустарным способом еще с давних времен. В Средневековье этот способ термической обработки использовали, чтобы улучшить прочность и твердость металлических предметов быта: топоров, серпов, пил, ножей, а также боевого оружия в виде копий, сабель и других.

И сейчас используют такой способ улучшения характеристик металла, не только в промышленных масштабах, но и в домашних условиях, в основном для закалки металлических предметов быта.

Что такое закалка металлов и ее виды

Под закалкой понимают вид термообработки металла, состоящий из его нагрева до температуры, при достижении которой наступает изменение структуры кристаллической решетки (полиморфное превращение) и дальнейшего ускоренного охлаждения в воде или масляной среде. Целью такой термообработки является повышение твердости металла.

Закалка металла

Применяется также закалка, при которой температура нагрева металла не дает состояться полиморфному превращению. В этом случае фиксируется его состояние, которое свойственно металлу при температуре нагрева. Это состояние называют пересыщенным твердым раствором.

Технологию закалки с полиморфным превращением используют в основном для изделий из стальных сплавов. Цветные металлы подвергают закалке без достижения полиморфного изменения.

После такой обработки стальные сплавы становятся тверже, но при этом они приобретают повышенную хрупкость, теряя пластичность.

Чтобы снизить нежелательную хрупкость после нагрева с полиморфным изменением, применяется термообработка, называемая отпуском. Она проводится при более низкой температуре с постепенным дальнейшим охлаждением металла. Таким способом снимается напряжение металла после процесса закаливания, и уменьшается его хрупкость.

При закалке без полиморфного превращения нет проблемы с излишней хрупкостью, но твердость сплава не достигает требуемого значения, поэтому при повторной термической обработке, называемой старением, ее наоборот повышают за счет распада пересыщенного твердого раствора.

Особенности закалки стали

Закаливаются в основном нержавеющие стальные изделия и сплавы, предназначенные для их изготовления. Они имеют мартенситную структуру и характеризуются повышенной твердостью, приводящей к хрупкости изделий.

Закалка металла

Если провести термообработку таких изделий с нагревом до определенной температуры с последующим быстрым отпуском, то можно добиться повышения вязкости. Это позволит использовать такие изделия в различных сферах.

Виды закаливания сталей

В зависимости от предназначения нержавеющих изделий, можно провести закалу всего предмета или только той его части, которая должна быть рабочей и иметь повышенные прочностные характеристики.

Поэтому закалку нержавеющих изделий подразделяют на два способа: глобальный и локальный.

Охлаждающая среда

Достижение необходимых свойств нержавеющих материалов во многом зависит от выбора способа их охлаждения.

Разные марки нержавеющих сталей подвергаются охлаждению по-разному. Если низколегированные стали охлаждают в воде или ее растворах, то для нержавеющих сплавов для этих целей применяют масляные растворы.

Закалка металла

Важно: При выборе среды, в которой проводят охлаждение металла после нагрева, следует учитывать, что в воде охлаждение проходит быстрее, чем в масле! Например, вода температурой 18°C способна охладить сплав на 600°C за секунду, а масло всего на 150°C.

Для того, чтобы получить высокую твердость металла, охлаждение проводят в проточной холодной воде. Также для повышения эффекта закалки для охлаждения готовят соляной раствор, добавляя в воду около 10% поваренной соли, или используют кислотную среду, в которой не менее 10% кислоты (чаще серной).

Кроме выбора охлаждающей среды немаловажным является режим и скорость охлаждения. Скорость снижения температуры должна быть не меньше 150°C за секунду. Таким образом, за 3 секунды температура сплава должна снизиться до 300°C. Дальнейшее снижение температуры может проводиться с любой скоростью, т. к. зафиксированная в результате быстрого охлаждения структура при низких температурах уже не разрушится.

Важно: Слишком быстрое охлаждение металла приводит к его излишней хрупкости! Это следует учитывать при самостоятельной закалке.

Различают следующие способы охлаждения:

  • С использованием одной среды, когда изделие помещают в жидкость и держат там до полного охлаждения.
  • Охлаждение в двух жидких средах: масле и воде (или солевом растворе) для нержавеющих сталей. Изделия из углеродистых сталей сначала охлаждают в воде, т. к. она является быстро охлаждающей средой, а потом в масле.
  • Струйным методом, когда деталь охлаждается струей воды. Это очень удобно, когда требуется закалить определенную область изделия.
  • Методом ступенчатого охлаждения с соблюдением температурных режимов.

Температурный режим

Правильный температурный режим проведения закалки нержавеющих изделий является важным условием их качества. Для достижения хороших характеристик их равномерно прогревают до 750-850°C, а потом быстро проводят охлаждение до температуры 400-450°C.

Важно: Нагрев металла выше точки рекристаллизации приводит к крупнозернистому строению, ухудшающему его свойства: излишней хрупкости, приводящей к растрескиванию!

Для снятия напряжения после нагрева до нужной температуры упрочнения металла, иногда используют поэтапное охлаждение изделий, постепенно снижая температуру на каждом из этапов нагрева. Такая технология позволяет полностью снять внутренние напряжения и получить прочное изделие с нужной твердостью.

Как закалить металл в домашних условиях

Пользуясь элементарными знаниями, можно провести закалку стали в домашних условиях. Нагревание металла обычно проводят с помощью костра, муфельных электропечей или горелок с использованием газа.

Закалка топора на костре и в печи

Если требуется придать дополнительную прочность бытовым инструментам, например, сделать топор более прочным, то самый простой способ его закалки можно провести в домашних условиях.

На топорах при изготовлении ставится клеймо, по которому можно узнать марку стали. Мы рассмотрим процесс закалки на примере инструментальной стали У7.

Закалка металла

Выполнять технологию нужно с соблюдением следующих правил:

1. Отжиг. Перед обработкой затупить острую кромку лезвия и поместить топор в горящую кирпичную печь для нагрева. За процедурой термообработки нужно внимательно следить, чтобы не допустить перегрева (допустимый нагрев 720-780°C). Более продвинутые мастера температуру узнают по цвету каления.

Закалка металла

А новички, температуру могут узнать с помощью магнита. Если магнит перестал приставать к металлу, значит топор нагрелся свыше 768°C (цвет красно-бордовый) и пришло время охлаждения.

Закалка металла

Кочергой придвинуть раскаленный топор к дверце печи, жар убрать вглубь, закрыть дверцу и задвижку, оставить нагретый металл в печи на 10 часов. Пусть топор постепенно остывает с печкой.

2. Закалка стали. Нагреть топор на костре, буржуйке или печи до темно-красного цвета — температура 800-830°C (магнит перестал магнитится, подождать ещё 2-3 минуты).

Закалка выполняется в подогретой воде (30°C) и масле. Опустить лезвие топора в воду на 3-4 см, интенсивно двигая его.

Закалка металла

Далее топор поместить в емкость с маслом, в случае возгорания масла нужно накрыть емкость плотной тканью. Выдерживать в масле нужно до полного остывания.

3. Отпуск лезвия топора. Отпуск уменьшает хрупкость стали и снимает внутренне напряжение. Зачистить металл наждаком, чтобы лучше различать цвета пебежалости.

Закалка металла

Выдержать топор в течение 1 часа в духовке, при температуре 270-320°C. После выдержки, достать и остудить на воздухе.

Видео: термообработка топора в домашних условиях, три стадии: отжиг, закалка, отпуск.

Закаливание ножа

Самостоятельно для закалки металлов целесообразно использовать печи. Для предметов быта в виде ножей, топоров, сверл и других, наиболее подходящими являются муфельные печи небольшого размера. В них можно достичь температуры закалки намного выше, чем на костре и проще добиться равномерного прогрева металла.

Такую печь можно изготовить самостоятельно. В интернете можно найти множество простых вариантов ее конструкции. В таких печах можно разогреть металлическое изделие до 700-900°C.

Закалка металла

Рассмотрим, как закалить нож из нержавейки в домашних условиях, используя муфельную электропечь. Для охлаждения вместо воды или масла используется расплавленный сургуч (можно достать в воинской части).

Последовательность процесса закалки следующая:

  • нож (без ручки, если она деревянная) кладут в холодную печь;
  • включив закрытую печь, нагревают ее вместе с ножом до получения ярко-красного цвета лезвия (800-&00°C);
  • раскаленным лезвием ножа режут сургуч до 10 раз, погружаясь в него на 1,5 см;
  • процедуру повторяют до 5 раз, нагревая лезвие ножа и остужая в сургуче;
  • остатки сургуча снимают скипидаром с помощью смоченной ткани.

Процедуру лучше делать на свежем воздухе, сургуч при плавке пахнет ужасно. Также, лезвие ножа можно греть на открытом огне.

Видео: другие способы закалки ножа в домашних условиях.

P.S. Зная поведение металла при нагревании и его свойства после термической обработки, а также технологию проведения закалки, можно с успехом проводить ее в домашних условиях для улучшения характеристик металлических изделий небольших размеров.

УСЛУГИ ПО ТЕРМООБРАБОТКЕ СТАЛИ (ТЕРМИЧЕСКОЙ ОБРАБОТКЕ МЕТАЛЛА) И ГАЛЬВАНИЧЕСКОМУ ПОКРЫТИЮ ДЕТАЛЕЙ И УЗЛОВ.
Телефон/факс для заявок: тел. +7 495 952-3966
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
(принимаем заказы из других городов на сложную термообработку деталей)

Наш завод производит работы по термообработке (термической обработке (закалка и ТВЧ) металлических стальных деталей, узлов, инструмента клиента на заказ. Мы берем заказы на отжиг, нормализацию, закалку и отпуск – услуги по термообработке (термической обработке) стали, металлов и сплавов в Москве и в Московской области. Заказчики со всей России, зная наш опыт и качество выполнения работ по термической обработке, обращаются к нам для проведения термообработки в оптимальные сроки и с гарантированным качеством. Мы принимаем разовые заказы на закалку отдельных металлических деталей и стальных узлов. Выполняем эксклюзивные работы по термической обработке любой сложности. Высокопрофессиональная термообработка деталей механизмов (термическая обработка стали): цементация, азотирование, закалка любой сложности, закалка Током Высокой Частоты (ТВЧ) (поверхностная закалка) выполняются профессионалами своего дела. Мы проводим контроль (проверка) результатов термообработки и оформление паспорта. В термической обработке мы профессионалы.

Заказать отжиг, нормализацию, закалку, поверхностную закалку токами высокой частоты ТВЧ и отпуск – заказать услуги по термообработке в Москве и Московской области можно обратившись в отдел продаж завода СТАНКОКОНСТРУКЦИЯ по телефонам +7 495 952-3966 или Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript. Для ускорения ответа по стоимости и срокам выполнения работ просим направить эскизы или чертежи по электронной почте Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript или по факсу.

Закалка металла

Наш завод проводит следующие виды термообработки стали (термической обработки деталей):
объемная термическая закалка металла;
закалка ТВЧ Током Высокой Частоты;
отжиг;
цементация и т.д.

По договоренности возможна термическая обработка и закалка металлических и стальных деталей с большими чем в данной таблице габаритами.

Термическая обработка (термообработка стали) металлов и сплавов в Москве – это услуга, которую предоставляет своим заказчикам наш завод. У нас есть все необходимое оборудование, за которым работают квалифицированные специалисты. Все заказы мы выполняем качественно и в установленные сроки. Так же мы принимаем и выполняем заказы на термообработку сталей и ТВЧ поступающие к нам и из других регионов России.

Основные виды термической обработки стали

Отжиг I рода диффузионный (гомогенизация) — Быстрый нагрев до t 1423 К, длительная выдержка и последующее медленное охлаждение. Происходит Выравнивание химической неоднородности материала в крупных фасонных отливках из легированной стали

Отжиг I рода рекристаллизационный — Нагрев до температуры 873—973 К, длительная выдержка и последующее медленное охлаждение. Происходит Уменьшение твердости и увеличение пластичности после холодного деформирования (обработка является межоперационной)

Отжиг I рода уменьшающий напряжения — Нагрев до температуры 473—673 К и последующее медленное охлаждение. Происходит Снятие остаточных напряжений после литья, сварки, пластической деформации или механической обработки.

Отжиг II рода полный — Нагрев до температуры выше точки Ас3 на 20—30 К, выдержка и последующее охлаждение. Происходит Снижение твердости, улучшение обрабатываемости, снятие внутренних напряжений в доэвтектоидной и эвтектоидной сталях перед закалкой (см.примечание к таблице)

Отжиг II рода неполный — Нагрев до температуры между точками Ac1 и Ас3, выдержка и последующее охлаждение. Происходит Снижение твердости, улучшение обрабатываемости, снятие внутренних напряжений в заэвтектоидной стали перед закалкой

Отжиг II рода изотермический — Нагрев до температуры на 30-50 К выше точки Ас3 (для доэвтектоидной стали) или выше точки Ас1 (для заэвтектоидной стали), выдержка и последующее ступенчатое охлаждение. Происходит Ускоренная обработка небольших прокатных изделий или поковок из легированной и высокоуглеродистой сталей с целью снижения твердости, улучшения обрабатываемости, снятия внутренних напряжений

Отжиг II рода сфероидизирующий — Нагрев до температуры выше точки Ас1 на 10—25 К, выдержка и после-дующее ступенчатое охлаждение. Происходит Уменьшение твердости, улучшение обрабатываемости, снятие внутренних напряжений в инструментальной стали перед закалкой, повышение пластичности низколегированной и среднеуглеродистой сталей перед холодным деформированием

Отжиг II рода светлый — Нагрев в контролируемой среде до температуры выше точки Ас3 на 20—30 К, выдержка и последующее охлаждение в контролируемой среде. Происходит Защита поверхности стали от окисления и обезуглероживания

Отжиг II рода Нормализация (нормализационный отжиг) — Нагрев до температуры выше точки Ас3 на 30-50 К, выдержка и последующее охлаждение на спокойном воздухе. Происходит Исправление структуры герегретой стали, снятие внутренних напряжений в деталях из конструкционной стали и улучшение их обрабатываемости, увеличение глубины прокаливаемости инструм. стали перед закалкой

Закалка непрерывная полная — Нагрев до температуры выше точки Ас3 на 30—50 К, выдержка и последующее резкое охлаждение. Происходит Получение (в сочетании с отпуском) высокой твердости и износостойкости деталей из доэвтектоидной и эвтектоидной сталей

Закалка неполная — Нагрев до температуры между точками Ас1 и Ас3, выдержка и последующее резкое охлаждение. Происходит Получение (в сочетании с отпуском) высокой твердости и износостойкости деталей из заэвтектоидной стали

Закалка прерывистая — Нагрев до t выше точки Ас3 на 30—50 К (для доэвтектоидной и эвтектоидной сталей) или между точками Ас1 и Ас3 (для заэвтектоидной стали), выдержка и последующее охлаждение в воде, а затем в масле. Происходит Уменьшение остаточных напряжений и деформаций в деталях из высокоуглеродистой инструментальной стали

Закалка изотермическая — Нагрев до температуры выше точки Ас3 на 30—50 К, выдержка и последующее охлаждение в расплавленных солях, а затем на воздухе. Происходит Получение минимальной деформации (коробления), повышение пластичности, предела выносливости и сопротивления изгибу деталей из легированной инструментальной стали

Закалка ступенчатая — То же (отличается от изотермической закалки меньшим временем пребывания детали в охлаждающей среде). Происходит Уменьшение напряжений, деформаций и предупреждение образования трещин в мелком инструменте из углеродистой инструментальной стали, а также в более крупном инструменте из легированной инструментальной и быстрорежущей стали

Закалка поверхностная — Нагрев электрическим током или газовым пламенем поверхностного слоя изделия до закалочной t с последующим быстрым охлаждением прогретого слоя. Происходит Повышение поверхностной твердости на определенную глубину, износоустойчивость и повышенная выносливость деталей машин и инструментов

Закалка с самоотпуском — Нагрев до температуры выше точки Ас3 на 30—50 К, выдержка и последующее неполное охлаждение. Сохранившееся внутри детали тепло обеспечивает отпуск закаленного наружного слоя Местное упрочнение ударного инструмента несложной конфигурации из углеродистой инструментальной стали, а также при индукционном нагреве

Закалка с обработкой холодом — Глубокое охлаждение после закалки до температуры 253-193 К. Происходит Повышение твердости и получение стабильных размеров деталей из высоколегированной стали

Закалка с подстуживанием — Нагретые детали перед погружением в охлаждающую среду некоторое время охлаждаются на воздухе или выдерживаются в термостате с пониженной t. Происходит Сокращение цикла термической обработки стали (применяется обычно после цементации).

Закалка светлая — Нагрев в контролируемой среде до температуры выше точки Ас3 на 20—30 К, выдержка и последующее охлаждение в контролируемой среде. Происходит Защита от окисления и обезуглероживания сложных деталей пресс-форм, штампов и приспособлений, не подвергаемых шлифованию

Отпуск низкий — Нагрев в интервале температуры 423—523 К и последующее ускоренное охлаждение. Происходит Снятие внутренних напряжений и уменьшение хрупкости режущего и мерительного инструмента после поверхностной закалки; для цементируемых деталей после закалки

Отпуск средний — Нагрев в интервале t = 623-773 К и последующее медленное или ускоренное охлаждение. Происходит Повышение предела упругости пружин, рессор и других упругих элементов

Отпуск высокий — Нагрев в интервале температур 773-953 К и последующее медленное или быстрое охлаждение. Происходит Обеспечение высокой пластичности деталей из конструкционной стали, как правило, при термическом улучшении

Термическое улучшение — Закалка и последующий высокий отпуск. Происходит Полное снятие остаточных напряжений. Обеспечение сочетания высокой прочности и пластичности при окончательной термической обработке деталей из конструкционной стали, работающих при ударных и вибрационных нагрузках

Термомеханическая обработка — Нагрев, быстрое охлаждение до 673-773 К, многократное пластическое деформирование, закалка и отпуск. Происходит Обеспечение для проката и деталей простой формы, не подвергаемых сварке, повышенной прочности по сравнению с прочностью, полученной при обычной термической обработке

Старение — Нагрев и длительная выдержка при повышенной температуре. Происходит Стабилизация размеров деталей и инструментов

Цементация — Насыщение поверхностного слоя мягкой стали углеродом (науглероживание). Сопровождается последующей закалкой с низким отпуском. Глубина цементированного слоя составляет 0,5-2 мм. Происходит Придание изделию высокой поверхностной твердости с сохранением вязкой сердцевины. Цементации подвергаются углеродистые или легированные стали с содержанием углерода: для мелких и средних изделий 0,08-0,15 %, для более крупных 0,15-0,5%. Цементации подвергаются зубчатые колеса, поршневые пальцы и др.

Цианирование — Термохимическая обработка стальных изделий в растворе цианистых солей при температуре 820. Происходит Насыщения поверхностного слоя стали углеродом и азотом (слой 0,15-0,3 мм.) Цианированию подвергаются малоуглеродистые стали, вследствие чего наряду с твердой поверхностью изделия обладают вязкой сердцевиной. Такие изделия отличаются высоким сопротивлением износу и стойкостью против ударных нагрузок.

Азотирование (нитрирование) — Насыщение азотом поверхностного слоя стальных изделий на глубину 0,2-0,3 мм. Происходит Придание высокой поверхностной твердости, повышенного сопротивления истиранию и коррозии. Азотированию подвергаются калибры, шестерни, шейки валов и др.

Обработка холодом — Охлаждение после закалки до температуры ниже нуля. Происходит Изменение внутренней структуры закаливаемых сталей. Применяется для инструментальных сталей, цементируемых изделий, некоторых высоколегированных сталей.

Закалка металла

МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА (ТЕРМООБРАБОТКА), определенный временной цикл нагрева и охлаждения, которому подвергают металлы для изменения их физических свойств. Термообработка в обычном смысле этого термина проводится при температурах, не достигающих точки плавления. Процессы плавления и литья, оказывающие существенное влияние на свойства металла, в это понятие не включаются. Изменения физических свойств, вызываемые термической обработкой, обусловлены изменениями внутренней структуры и химических соотношений, происходящими в твердом материале. Циклы термической обработки представляют собой различные комбинации нагрева, выдерживания при определенной температуре и быстрого или медленного охлаждения, соответствующие тем структурным и химическим изменениям, которые требуется вызвать.

Зернистая структура металлов. Всякий металл обычно состоит из множества соприкасающихся друг с другом кристаллов (называемых зернами), как правило, имеющих микроскопические размеры, но иногда и видимых простым глазом. Внутри каждого зерна атомы расположены так, что образуют правильную трехмерную геометрическую решетку. Тип решетки, называемый кристаллической структурой, является характеристикой материала и может быть определен методами рентгеноструктурного анализа. Правильное расположение атомов сохраняется в пределах всего зерна, если не считать небольших нарушений, таких, как отдельные узлы решетки, случайно оказавшиеся вакантными. Все зерна имеют одинаковую кристаллическую структуру, но, как правило, по-разному ориентированы в пространстве. Поэтому на границе двух зерен атомы всегда менее упорядочены, чем внутри них. Этим объясняется, в частности, то, что границы зерен легче поддаются травлению химическими реагентами. На полированной плоской поверхности металла, обработанной подходящим травителем, обычно выявляется четкая картина границ зерен. Физические свойства материала определяются свойствами отдельных зерен, их воздействием друг на друга и свойствами границ зерен. Свойства металлического материала существенным образом зависят от размеров, формы и ориентации зерен, и цель термической обработки состоит в том, чтобы управлять этими факторами.

Атомные процессы при термической обработке. При повышении температуры твердого кристаллического материала его атомам становится все легче переходить из одного узла кристаллической решетки в другой. Именно на этой диффузии атомов и основана термическая обработка. Наиболее эффективный механизм движения атомов в кристаллической решетке можно представить себе как движение вакантных узлов решетки, которые всегда имеются в любом кристалле. При повышенных температурах благодаря увеличению скорости диффузии ускоряется процесс перехода неравновесной структуры вещества в равновесную. Температура, при которой заметно повышается скорость диффузии, неодинакова для разных металлов. Она обычно выше для металлов с высокой температурой плавления. В вольфраме с его температурой плавления, равной 3387 C, рекристаллизация не происходит даже при красном калении, тогда как термическую обработку алюминиевых сплавов, плавящихся при низких температурах, в некоторых случаях оказывается возможным проводить при комнатной температуре.

Во многих случаях термической обработкой предусматривается очень быстрое охлаждение, называемое закалкой, цель которого сохранить структуру, образовавшуюся при повышенной температуре. Хотя, строго говоря, такую структуру нельзя считать термодинамически устойчивой при комнатной температуре, практически она вполне устойчива благодаря низкой скорости диффузии. Очень многие полезные сплавы обладают подобной «метастабильной» структурой.

Изменения, вызываемые термической обработкой, могут быть двух основных видов. Во-первых, и в чистых металлах, и в сплавах возможны изменения, затрагивающие только физическую структуру. Это могут быть изменения напряженного состояния материала, изменения размеров, формы, кристаллической структуры и ориентации его кристаллических зерен. Во-вторых, изменяться может и химическая структура металла. Это может выражаться в сглаживании неоднородностей состава и образовании выделений другой фазы, во взаимодействии с окружающей атмосферой, созданной для очистки металла или придания ему заданных поверхностных свойств. Изменения того и другого вида могут происходить одновременно.

Снятие напряжений. Деформация в холодном состоянии повышает твердость и хрупкость большинства металлов. Иногда такое «деформационное упрочнение» желательно. Цветным металлам и их сплавам обычно придают ту или иную степень твердости холодной прокаткой. Малоуглеродистые стали тоже часто упрочняют холодным деформированием. Высокоуглеродистые стали, доведенные холодной прокаткой или холодным волочением до повышенной прочности, необходимой, например, для изготовления пружин, обычно подвергают отжигу для снятия напряжений нагревают до сравнительно низкой температуры, при которой материал остается почти столь же твердым, как и раньше, но в нем исчезают неоднородности распределения внутренних напряжений. Благодаря этому ослабевает тенденция к растрескиванию, особенно в коррозионных средах. Такое снятие напряжений происходит, как правило, за счет локального пластического течения в материале, не приводящего к изменениям общей структуры.

Рекристаллизация. При разных методах обработки металлов давлением нередко требуется сильно изменять форму заготовки. Если формообразование должно проводиться в холодном состоянии (что часто диктуется практическими соображениями), то приходится разбивать процесс на ряд ступеней, в промежутках между ними проводя рекристаллизацию. После первой ступени деформации, когда материал упрочнен настолько, что дальнейшее деформирование может привести к разрушению, заготовку нагревают до температуры, превышающей температуру отжига для снятия напряжений, и выдерживают для рекристаллизации. Благодаря быстрой диффузии при такой температуре за счет атомной перестройки возникает совершенно новая структура. Внутри зеренной структуры деформированного материала начинают расти новые зерна, которые с течением времени полностью ее заменяют. Сначала образуются мелкие новые зерна в местах наибольшего нарушения старой структуры, а именно на старых границах зерен. При дальнейшем отжиге атомы деформированной структуры перестраиваются так, что тоже становятся частью новых зерен, которые растут и в конце концов поглощают всю старую структуру. Заготовка сохраняет прежнюю форму, но она теперь из мягкого, ненапряженного материала, который может быть подвергнут новому циклу деформирования. Такой процесс можно повторять несколько раз, если этого требует заданная степень деформирования.

Холодная обработка это деформирование при температуре, слишком низкой для рекристаллизации. Для большинства металлов данному определению соответствует комнатная температура. Если деформирование производится при достаточно высокой температуре, так что рекристаллизация успевает следовать за деформированием материала, то такая обработка называется горячей. Пока температура остается достаточно высокой, его можно сколь угодно сильно деформировать. Горячее состояние металла определяется, в первую очередь, тем, насколько его температура близка к точке плавления. Высокая ковкость свинца означает, что он легко рекристаллизуется, т. е. его «горячую» обработку можно проводить при комнатной температуре.

Контроль текстуры. Физические свойства зерна, вообще говоря, неодинаковы в разных направлениях, так как каждое зерно это монокристалл с собственной кристаллической структурой. Свойства металлического образца представляют собой результат усреднения по всем зернам. В случае беспорядочной ориентации зерен общие физические свойства одинаковы во всех направлениях. Если же некоторые кристаллические плоскости или атомные ряды большинства зерен параллельны, то свойства образца становятся «анизотропными», т. е. зависящими от направления. В этом случае у чашечки, полученной глубоким выдавливанием из круглой пластинки, будут «язычки», или «фестоны», на верхней кромке, объясняющиеся тем, что в одних направлениях материал деформируется легче, чем в других. При механическом формообразовании анизотропия физических свойств, как правило, нежелательна. Но в листах магнитных материалов для трансформаторов и других устройств очень желательно, чтобы направление легкого намагничения, которое в монокристаллах определяется кристаллической структурой, во всех зернах совпадало с заданным направлением магнитного потока. Таким образом, «предпочтительная ориентация» (текстура) может быть желательна или нежелательна в зависимости от назначения материала. Вообще говоря, при рекристаллизации материала его предпочтительная ориентация меняется. Характер этой ориентации зависит от состава и чистоты материала, от вида и степени холодной деформации, а также от длительности и температуры отжига.

Контроль размера зерен. Физические свойства металлического образца в значительной мере определяются средним размером зерен. Наилучшим механическим свойствам почти всегда соответствует мелкозернистая структура. Уменьшение размера зерна часто является одной из целей термической обработки (а также плавления и литья). При повышении температуры ускоряется диффузия, а потому средний размер зерна увеличивается. Границы зерен смещаются так, что более крупные зерна растут за счет мелких, которые, в конце концов, исчезают. Поэтому завершающие процессы горячей обработки обычно проводят при возможно более низкой температуре, чтобы были минимальны размеры зерен. Часто специально предусматривают низкотемпературную горячую обработку, в основном для уменьшения размеров зерен, хотя того же результата можно достичь холодной обработкой с последующей рекристаллизацией.

Гомогенизация. Процессы, о которых говорилось выше, протекают и в чистых металлах, и в сплавах. Но существует ряд других процессов, которые возможны лишь в металлических материалах, содержащих два или большее число компонентов. Так, например, в отливке сплава почти наверняка будут неоднородности химического состава, что определяется неравномерным процессом затвердевания. В затвердевающем сплаве состав твердой фазы, образующейся в каждый данный момент, не таков, как в жидкой, находящейся с ней в равновесии. Следовательно, состав твердого вещества, возникшего в начальный момент затвердевания, будет иным, нежели в конце затвердевания, а это и ведет к пространственной неоднородности состава в микроскопическом масштабе. Такая неоднородность устраняется простым нагреванием, особенно в сочетании с механическим деформированием.

Очистка. Хотя чистота металла определяется в первую очередь условиями плавления и литья, очистка металла часто достигается термической обработкой в твердом состоянии. Примеси, содержащиеся в металле, реагируют на его поверхности с атмосферой, в которой он нагревается; так, атмосфера водорода или другого восстановителя может превратить значительную часть оксидов в чистый металл. Глубина такой очистки зависит от способности примесей диффундировать из объема на поверхность, а поэтому определяется длительностью и температурой термической обработки.

Выделение вторичных фаз. В основе большинства режимов термической обработки сплавов лежит один важный эффект. Он связан с тем, что растворимость в твердом состоянии компонентов сплава зависит от температуры. В отличие от чистого металла, в котором все атомы одинаковы, в двухкомпонентном, например твердом, растворе имеются атомы двух разных сортов, случайно распределенные по узлам кристаллической решетки. Если увеличивать количество атомов второго сорта, то можно достичь состояния, когда они не смогут просто замещать атомы первого сорта. Если количество второго компонента превышает этот предел растворимости в твердом состоянии, в равновесной структуре сплава появляются включения второй фазы, отличающиеся по составу и структуре от исходных зерен и обычно разбросанные между ними в виде отдельных частиц. Такие частицы второй фазы могут оказывать сильное влияние на физические свойства материала, что зависит от их размера, формы и распределения. Эти факторы можно изменять термической обработкой (термообработкой).

Термическая обработка — процесс обработки изделий из металлов и сплавов путём теплового воздействия с целью изменения их структуры и свойств в заданном направлении. Это воздействие может сочетаться также с химическим, деформационным, магнитным и др.

Историческая справка о термической обработке.
Человек использует Термическую обработку металлов с древнейших времён. Ещё в эпоху энеолита, применяя холодную ковку самородных золота и меди, первобытный человек столкнулся с явлением наклёпа, которое затрудняло изготовление изделий с тонкими лезвиями и острыми наконечниками, и для восстановления пластичности кузнец должен был нагревать холоднокованую медь в очаге. Наиболее ранние свидетельства о применении смягчающего отжига наклёпанного металла относятся к концу 5-го тысячелетия до н. э. Такой отжиг по времени появления был первой операцией Термической обработки металлов. При изготовлении оружия и орудий труда из железа, полученного с использованием сыродутного процесса, кузнец нагревал железную заготовку для горячей ковки в древесноугольном горне. При этом железо науглероживалось, то есть происходила цементация одна из разновидностей химико-термической обработки. Охлаждая кованое изделие из науглероженного железа в воде, кузнец обнаружил резкое повышение его твёрдости и улучшение др. свойств. Закалка в воде науглероженного железа применялась с конца 2 начала 1-го тысячелетия до н. э. В «Одиссее» Гомера (8 7 вв. до н. э.) есть такие строки: «Как погружает кузнец раскалённый топор иль секиру в воду холодную, и зашипит с клокотаньем железо крепче железо бывает, в огне и воде закаляясь». В 5 в. до н. э. этруски закаливали в воде зеркала из высокооловянной бронзы (скорее всего для улучшения блеска при полировке). Цементацию железа в древесном угле или органическом веществе, закалку и отпуск стали широко применяли в средние века в производстве ножей, мечей, напильников и др. инструментов. Не зная сущности внутренних превращений в металле, средневековые мастера часто приписывали получение высоких свойств при Термической обработке металлов проявлению сверхъестественных сил. До середины 19 в. знания человека о Термической обработке металлов представляли собой совокупность рецептов, выработанных на основе многовекового опыта. Потребности развития техники, и в первую очередь развития сталепушечного производства, обусловили превращение термообработки металлов из искусства в науку. В середине 19 в. когда армия стремилась заменить бронзовые и чугунные пушки более мощными стальными, чрезвычайно острой была проблема изготовления орудийных стволов высокой и гарантированной прочности. Несмотря на то что металлурги знали рецепты выплавки и литья стали, орудийные стволы очень часто разрывались без видимых причин. Д. К. Чернов на Обуховском сталелитейном заводе в Петербурге, изучая под микроскопом протравленные шлифы, приготовленные из дул орудий, и наблюдая под лупой строение изломов в месте разрыва, сделал вывод, что сталь тем прочнее, чем мельче её структура. В 1868 Чернов открыл внутренние структурные превращения в охлаждающейся стали, происходящие при определённых температурах. которые он назвал критическими точками а и b. Если сталь нагревать до температур ниже точки а, то её невозможно закалить, а для получения мелкозернистой структуры сталь следует нагревать до температур выше точки b. Открытие Черновым критических точек структурных превращений в стали позволило научно обоснованно выбирать режим Термической обработки для получения необходимых свойств стальных изделий.

В 1906 А. Вильм (Германия) на изобретённом им дуралюмине открыл старение после закалки (см. Старение металлов) важнейший способ упрочения сплавов на разной основе (алюминиевых, медных, никелевых, железных и др.). В 30-е гг. 20 в. появилась термомеханическая обработка стареющих медных сплавов, а в 50-е термомеханическая обработка сталей, позволившая значительно повысить прочность изделий. К комбинированным видам Термической обработки относится термомагнитная обработка, позволяющая в результате охлаждения изделий в магнитном поле улучшать их некоторые магнитные свойства.

Итогом многочисленных исследований изменений структуры и свойств металлов и сплавов при тепловом воздействии явилась стройная теория Термической обработки металлов.

Классификация видов Термической обработки основывается на том, какого типа структурные изменения в металле происходят при тепловом воздействии. Термическая обработка металлов подразделяется на собственно термическую, заключающуюся только в тепловом воздействии на металл, химико-термическую, сочетающую тепловое и химическое воздействия, и термомеханическую, сочетающую тепловое воздействие и пластическую деформацию. Собственно термическая обработка включает следующие виды: отжиг 1-го рода, отжиг 2-го рода, закалку без полиморфного превращения и с полиморфным превращением, старение и отпуск.

Азотирование — насыщение поверхности металлических деталей азотом с целью повышения твёрдости, износоустойчивости, предела усталости и коррозионной стойкости. Азотированию подвергают сталь, титан, некоторые сплавы, наиболее часто легированные стали, особенно хромоалюминиевые, а также сталь, содержащую ванадий и молибден.
Азотирование стали происходит при t 500 650 С в среде аммиака. Выше 400 С начинается диссоциация аммиака по реакции NH3 ’ 3H + N. Образовавшийся атомарный азот диффундирует в металл, образуя азотистые фазы. При температуре азотирования ниже 591 С азотированный слой состоит из трёх фаз (рис.): µ нитрида Fe2N, ³’ нитрида Fe4N, ± азотистого феррита, содержащего около 0,01% азота при комнатной температуре. При температуре азотирования 600 650 С возможно образование ещё и ³-фазы, которая в результате медленного охлаждения распадается при 591 C на эвтектоид ± + ³1. Твёрдость азотированного слоя увеличивается до HV = 1200 (соответствует 12 Гн/м2) и сохраняется при повторных нагревах до 500 600 C, что обеспечивает высокую износоустойчивость деталей при повышенных температурах. Азотированные стали значительно превосходят по износоустойчивости цементированные и закалённые стали. Азотирование длительный процесс, для получения слоя толщиной 0,2 0,4 мм требуется 20 50 ч. Повышение температуры ускоряет процесс, но снижает твёрдость слоя. Для защиты мест, не подлежащих азотированию, применяются лужение (для конструкционных сталей) и никелирование (для нержавеющих и жаропрочных сталей). Для уменьшения хрупкости слоя азотирования жаропрочных сталей иногда ведут в смеси аммиака и азота.
Азотирование титановых сплавов проводится при 850 950 С в азоте высокой чистоты (азотирование в аммиаке не применяется из-за увеличения хрупкости металла).

При азотировании образуется верхний тонкий нитридный слой и твёрдый раствор азота в ±-титане. Глубина слоя за 30 ч 0,08 мм с поверхностной твёрдостью HV = 800 850 (соответствует 8 8,5 Гн/м2). Введение в сплав некоторых легирующих элементов (Al до 3%, Zr 3 5% и др.) повышает скорость диффузии азота, увеличивая глубину азотированного слоя, а хром уменьшает скорость диффузии. Азотирование титановых сплавов в разреженном азоте [100 10 н/м2 (1 0,1 мм рт ст.)] позволяет получать более глубокий слой без хрупкой нитридной зоны.
Азотирование широко применяют в промышленности, в том числе для деталей, работающих при t до 500 600 С (гильз цилиндров, коленчатых валов, шестерён, золотниковых пар, деталей топливной аппаратуры и др.).
Лит. Минкевич А. Н. Химико-термическая обработка металлов и сплавов, 2 изд. М. 1965: Гуляев А. П..Металловедение, 4 изд. М. 1966.


Внимание, только СЕГОДНЯ!
Закладка Постоянная ссылка.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *