Газовая сварка и резка металлов

При газовой сварке место соединения нагревают до расплавления высокотемпературным газовым пламенем, получаемым при сжигании горючего газа в атмосфере технически чистого кислорода. Зазор между свариваемыми кромками заполняют присадочным металлом.

В качестве горючих газов можно применять ацетилен, природный газ, водород, керосин, бензин, нефтяные газы (пропан-бутан) и др.

Наибольшее применение получила газовая сварка ацетиленокислородным пламенем, так как С2Н2 имеет большую теплотворную способность и температуру пламени (3200 0С).

Ацетилен получают в газогенераторах при взаимодействии воды с карбидом кальция:

При разложении 1 кг СаС2 получается 250…300 дм3 С2Н2 .

Ацетилен взрывоопасен при избыточном давлении свыше 0,175 МПа. Транспортируют его по шлангам или в баллонах, где он растворен в ацетоне (в 1 дм3 — 24 дм3 С2Н2). Давление в баллоне 0,6…2,2 МПа.

Ацетиленовые генераторы различают по способу взаимодействия карбида кальция с водой (КВ — карбид в воду, ВК — вода на карбид, К — контактный). Наибольший выход С2Н2 дает генератор КВ, наименьший — К.

Для предотвращения проникновения ацетиленокислородного пламени в генератор при обратном ударе (когда скорость истечения меньше скорости горения) устанавливают предохранительные водяные затворы.

Кислород поставляется к месту сварки в стальных баллонах под давлением 15 МПа. В баллоне емкостью 40 дм3 (литров) содержится 6 м3 кислорода. Для снижения давления газа на выходе из баллона и поддержания постоянной величины рабочего давления служит газовый редуктор.

Кислородный редуктор снижает давление с 15 до 0,1 МПа, ацетиленовый с 1,6 до 0,02 МПа.

Газосварочные горелки используют для образования газосварочного пламени. Наибольшее применение находит инжекторная горелка, работающая на среднем и низком давлении. Инжектор представляет собой втулку с конусным отверстием, на выходе из которой обеспечивается смешение газов в камере. Горелки имеют сменные наконечники с различными диаметрами выходных отверстий инжектора и мундштука для регулирования мощности пламени.

В зависимости от соотношения ацетилена и кислорода различают:

— нормальное пламя (О2/С2Н2 = 1…1,2);

— окислительное пламя (О2/С2Н2 = 1,4…1,5)

— науглероживающее пламя (О2/С2Н2 < 1).

Характер пламени можно регулировать подачей газа. В подавляющем большинстве случаев используется нормальное пламя.

Науглероживающее пламя используют в случае компенсации выгорания углерода (чугун, цветные металлы).

Присадочную проволоку для газовой сварки выбирают в зависимости от состава свариваемого металла. Для сварки цветных металлов и некоторых специальных сплавов используют флюсы: кислые (бура с борной кислотой) — для сварки меди и ее сплавов; бескислородные — для сварки алюминиевых сплавов.

При газовой сварке заготовки нагреваются более плавно, чем при дуговой сварке, поэтому ее используют для сварки металла малой толщины (0,2..3 мм), легкоплавких цветных металлов и сплавов, требующих постепенного нагрева и охлаждения (инструментальных сталей, чугуна, латуней), для пайки и наплавочных работ, подварки дефектов чугунных и бронзовых отливок.

Резка металлов — газокислородная, кислородно-флюсовая, воздушно-дуговая, плазменно-дуговая.

Газокислородная резка заключается в горении металла в струе кислорода и удалении этой струей образующихся жидких оксидов. Горение железа в кислороде сопровождается выделением значительного количества теплоты.

Для начала горения металл подогревают до температуры воспламенения (для стали 1000…1200 0 С) ацетиленокислородным пламенем, затем подается струя режущего кислорода, и нагретый металл начинает гореть.

Выделяющаяся при этом теплота вместе с ацетиленокислородным пламенем разогревают металл 3 на всю его толщину. Образующиеся в зоне реза 4 оксиды 5 выдуваются струей режущего кислорода. Для обеспечения нормального процесса резки металл должен отвечать следующим основным требованиям:

1) температура плавления металла должна быть выше его температуры горения в кислороде;

2) температура плавления оксидов металла должна быть ниже температуры его плавления;

3) теплопроводность металла не должна быть слишком высокой.

Указанным требованиям отвечают в основном низкоуглеродистые и низколегированные стали. Для резки высокоуглеродистых и высоколегированных сталей, чугуна, алюминия, меди, никеля и т.д. применяется кислородно-флюсовая резка.

Обычной кислородной резкой разрезают металл толщиной 5…300 мм, более 300 мм режут специальными резками. Широко применяется в литейном производстве для отделения литниковых систем, заливов, заусенцев, резки крупных слитков, в металлургии для прожигания леток в мартеновской печи, отверстий в стакане разливочных ковшей (кислородным копьем).

При кислородно-флюсовой резке в зону резки вместе с режущим кислородом подают порошкообразный флюс на железной основе (диаметр гранул 0,13. 0,22 мм). Флюс выполняет следующие функции:

1) повышает температуру за счет сгорания в струе кислорода;

2) механически удаляет тугоплавкие оксиды;

3) понижает температуру плавления оксидов.

Воздушно-дуговая резка осуществляется дугой неплавящимся графитовым электродом, металл выдувается потоком сжатого воздуха.

Плазменно-дуговая резка выполняется плазменной дугой или плазменной струей с помощью плазмотрона.

Газовая сварка и резка металлов

Лабораторная работа №4

Газовая сварка и резка металлов

1.1. Основные понятия

При газовой сварке для расплавления металла применяют высокотемпературное пламя, которое получается при сжигании горючего газа в кислороде на выходе из мундштука горелки. В качестве горючего газа используется чаще всего ацетилен (С2 Н2 ), вследствие его технико-экономических преимуществ, одним из которых является наиболее высокая температура пламени (3150 0 С). Таким пламенем можно сваривать углеродистые и низколегированные стали толщиной 0,5 — 12мм.

С2 Н2 — это бесцветный газ с характерным запахом, благодаря примесям сернистого и фтористого водорода. Он взрывоопасен.

Иногда для сварки и, особенно для резки используют другие горючие газы. В этих случаях кислород способствует интенсивному горению горючего газа и получению высокой температуры сварочного пламени.

1.2. Строение газосварочного пламени

Ацетилено-кислородное пламя бывает нормальным, окислительным науглероживающим. Тип пламени достигается соотношением газов, которое регулируется вентилями. Для образования пламени при использовании инжекторной горелки, необходимо сначала открыть кислородный вентиль, а затем ацетиленовый.

Нормальное пламя (рис.4.1) достигается подачей в горелку 1,1÷1,2 объема кислорода на один объем С2 Н2.

первая зона представляет собой смесь С2 Н2 с кислородом, истекающая из горелки. Она видна в пламени как белое яркое пятно (ядро);

в Газовая сварка и резка металловторая зона представляет собой результат неполного сгорания С2 Н2. Она видна в пламени как слабо-фиолетовый ореол первой зоны и характеризуется наличием свободного водорода и окиси углерода. Вторая зона называется восстановительной;

третья зона (факел) имеет пурпурно-фиолетовый цвет и называется окислительной зоной.

Рисунок 4.1. Строение газосварочного

О Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металлов Газовая сварка и резка металловкислительное пламя Газовая сварка и резка металлов образуется при чрезмерном избытке кислорода. При этом резко сокращается пламя, ядро заостряется, вторая зона пропадает. Окислительное пламя при сварке не применяется, но пригодно для резки.

Науглероживающее пламя Газовая сварка и резка металлов получается при избытке С2 Н2. При этом пламя и ядро увеличивается, вторая зона пропадает, и пламя становится коптящим. Имеющийся свободный углерод второй зоны будет вступать в реакцию с ванной жидкого металла и будет науглероживать ее. Это пламя применяется для сварки чугунов, цветных металлов и некоторых сталей.

1.3. Оборудование и инструмент газовой сварки

В оборудование поста газосварщика входят: газовые или ацетиленовые баллоны, ацетиленовые генераторы, газовые редукторы, сварочные горелки, шланги для подвода газов и стол.

Газовые баллоны наиболее распространены водяной емкости 40л, диаметром 214÷220 мм, высотой 1390 мм и весом 50÷60 кг. Газовая емкость баллона 6 м 3 при давлении 15 МПа. Окрас баллонов зависит от транспортируемого газа: кислород – голубой цвет с надписью черными буквами; С2 Н2 – белый цвет с надписью красными буквами. Ацетиленовый баллон конструктивно отличается от кислородного тем, что он заполняется пористой массой, пропитанной ацетоном, а для уменьшения взрывоопасности имеет стальной вентиль.

Газовые редукторы применяют для питания сварочных постов газом из баллона. Они снижают давление газа до рабочего, поддерживают его постоянным и обеспечивают легкую регулировку рабочего давления.

Редукторы бывают прямого и обратного действия, различие между которыми состоит в том, что в первом случае газ из камеры высокого давления стремится открыть клапан, закрывающий отверстие камеры низкого давления, а во втором случае – закрывать клапан. Редукторы окрашены в цвет баллона, снабжены двумя манометрами, один из которых показывает давление газа в баллоне, другой – рабочее давление газа.

Ацетиленовые генераторы предназначены для получения С2 Н2 разложением водой карбида кальция СаС2 по реакции:

Теоретически для разложения 1 кг СаС2 надо затратить 0,37м 3 С2 Н2 . 1,156 кг гашеной извести и более 400 ккал тепла.

Ацетиленовые генераторы различаются:

по производительности: от 1 до 80 м 3 /ч;

по ряду установок: стационарного и передвижного типа;

по принципу взаимодействия карбида кальция с водой: вода на карбид, вода на карбид –вытеснение, карбид в воду, вытеснение, сухого разложения.

Н Газовая сварка и резка металлова рисунке 4.2 приведена схема ацетиленового генератора системы вода на карбид. Воду периодически подают на карбид, который находится в корзинке 1. Корзинку помещают в горизонтальную цилиндрическую реторту 2, герметически закрывающуюся снаружи. На пути следования газа от генератора к сварочной горелке устанавливают предохранительные водяные затворы 3, предотвращающие проникание кислородно-ацетиленового пламени в ацетиленовый генератор при его обратном ударе.

Рисунок 4.2. Схема ацетиленового

генератора системы вода на карбид

На рисунке 4.3 предоставлена схема стационарного ацетиленового генератора низкого давления типа ГНВ — 1,25, производительностью 1,25 м3 /ч. Генератор состоит из верхней и нижней частей, разделенных перегородкой 6. В нижней части вварена реторта 3, в которой находится корзина 2 для карбида кальция. Имеются также вытеснитель 11, измеритель уровня воды 8, шланги для подачи воды 4 и отвода ацетилена 10, краны для воды 5 и газа 12. Все генераторы снабжены предохранительными водяными затворами.

Для подготовки генератора к работе необходимо открыть крышку 1 реторты и загрузить карбид кальция в корзину, после чего плотно закрыть крышку. Закрыть кран 5 и открыть кран 12. Корпус генератора заполняется водой до уровня шайбы-измерителя 8.

Д Газовая сварка и резка металловля пуска генератора необходимо закрыть кран 12 и открыть кран 5. Вода через шланг 4 попадает в реторту и смачивает карбид кальция, а образующийся С2 Н2 через трубку 7 собирается в газосборнике 15, из него по трубе 9 при открытом кране 12 поступает в предохранительный водяной затвор и далее идет к сварочной горелке.

Рисунок 4.3. Схема стационарного ацетиленового

генератора типа ГНВ — 1,25

В процессе выполнения газовой сварки возможны обратные удары. Обратный удар — это распространение взрывной волны или пламени в направлении от горелки к источнику горючего газа. Причинами обратного удара могут быть:

значительный избыток кислорода (большое давление, при котором скорость сгорания горючего газа превышает скорость истечения газа из горелки);

закупорка мундштука наконечника горелки. Это происходит в результате разбрызгивания металла и попадания горячей капли в выходное отверстие мундштука;

нагрев наконечника, при котором С2 Н2 взрывается внутри горелки.

Для защиты генераторов от обратных ударов применяются предохранительные, чаще всего водяные, затворы. Действие водяного затвора открытого и закрытого типов основано на том, что взрывная волна и пламя, движущиеся навстречу потоку горючего газа, выводятся в атмосферу или гасятся внутри затвора.

Для стационарного ацетиленового генератора типа

ГНВ — 1,25 используется водяной затвор открытого типа. Затвор через воронку 13 заполняют водой до уровня контрольного крана 19. При нормальной работе С2 Н2 проходит по газоотводной трубке 17, находящейся в предохранительной трубе 14 корпуса 16, через слой воды и накапливается в верхней части корпуса. Для предотвращения выхода газа в атмосферу служит рассекатель 20. Из верхней части С2 Н2 через ниппель 18 поступает к сварочной горелке. При обратном ударе взрывная волна давит на воду, которая заходит в отверстие 21 газоподводящей трубки и создает водяную пробку, преграждая доступ взрывной волны в газопроводящую трубку. Смесь сгорающего газа с водой поднимается через зазор между газопроводящей и предохранительной трубками в воронку. Газ выходит в атмосферу, а вода возвращается в корпус. После каждого удара надо проверять уровень воды в затворе и, в случае надобности, доливать ее.

Технология газовой сварки и резки

Газовую ручную сварку применяют для соединения тонкостенных (до 3,5 мм) стальных труб с условным проходом до 80 мм, где не может быть использована электродуговая сварка. Ограниченность применения газовой сварки объясняется тем, что механические свойства сварного шва при газовой сварке ниже, чем при электродуговой. При газовой сварке наплавленный металл сварного шва в исходном состоянии имеет меньшее удлинение и меньшую ударную вязкость, чем основной металл.

Технология газовой сварки заключается в том, что кромки свариваемых деталей нагреваются газокислородным пламенем и расплавляются, зазор между ними заполняется металлом присадочной проволоки, вводимой в зону нагрева. Газовое пламя расплавляет участок, шириной в 2,5—3 раза превышающий глубину. Проплавление на глубину более 4—5 мм затруднено из-за избытка жидкого металла. Поэтому при сварке труб с толщиной стенки более 4 мм делают скос кромок. Легче и быстрее осуществляется сварка в нижнем положении шва. При газовой сварке труб из углеродистой стали применяют сварочную проволоку Св-08А, Св-08ГА или Св-08ГС,

Процесс кислородной резки основан на сгорании некоторого объема обрабатываемого металла в струе кислорода и удалении этой струей образующихся окислов (шлаков). Кислородной резке могут подвергаться металлы, температура воспламенения которых в кислороде ниже температуры их плавления. В наибольшей степени этому условию удовлетворяет малоуглеродистая сталь, температура воспламенения которой около 1350° С, а температура плавления 1500° С. Чугун, большинство высоколегированных сталей и цветных металлов не удовлетворяют этому условию.

Кислород поставляют в стальных баллонах, окрашенных в голубой цвет, емкостью 40 л под давлением 150 кгс/см 2 . Вес баллона 67 кг.

Ацетилен поставляют в баллонах под давлением 16 кгс/см 2 , или получают на месте в ацетиленовых генераторах из карбида кальция. Из 1 кг карбида кальция получают 230— 280 л ацетилена. Емкость ацетиленовых баллонов 40 и 50 л, диаметр 219 мм, вес 52 и 64 кг. Баллоны окрашивают в белый цвет с надписью «ацетилен».

В качестве горючих газов, кроме ацетилена, применяют (главным образом, при кислородной резке) сжиженные нефтяные газы (пропано-бутановая смесь), природный газ (метан), пары керосина, бензина.

Смеси горючих газов с воздухом и кислородом взрывоопасны, поэтому газовую сварку и резку надо выполнять в хорошо проветриваемых помещениях.

Пропано-бутановые смеси получают в качестве побочных продуктов при добыче и переработке естественных нефтяных газов и нефти. Смеси пропана и бутана сжижаются при небольшом давлении (от 1 до 8 кгс/см 2 ). Хранят и транспортируют их в тонкостенных стальных баллонах емкостью 40—55 л при давлении до 17 кгс/см 2 .

При испарении 1 кг жидкой смеси образуется около 500 л газа. Баллон окрашивают в красный цвет.

Природные газы, получаемые из газовых месторождений, состоят в основном из метана (до 90% по объему) и примеси других газов. На место потребления природные газы подают, как правило, по газопроводам, и сравнительно редко транспортируют в баллонах, окрашенных в красный цвет.

Для ацетилено-кислородной сварки и резки требуется следующее оборудование. генераторы для получения ацетилена или баллоны с ацетиленом, баллоны с кислородом, редукторы для снижения давления, газовые горелки или резаки.

Ацетиленовые генераторы предназначены для получения ацетилена из карбида кальция под действием воды.

Газосварочные горелки предназначены для смешивания кислорода и горючего газа в требуемом соотношении и обеспечения образования устойчивого сварочного пламени. По принципу действия горелки классифицируют на инжекторные и безинжекторные. В табл. 10 приведены общие сведения о сварочных горелках.

Резаки, используемые для кислородной резки, отличаются от горелок наличием трубки и вентиля режущего кислорода, а также особым устройством головки. Резаки классифицируют по роду горючего (ацетиленовые, для газов — заменителей ацетилена, для жидких горючих) и по принципу действия (инжекторные и безинжекторные). Наибольшее применение нашли универсальные ацетиленокислородные резаки РР-53, а. также вставные ацетиленокислородные резаки РГС-53 и РГМ-53 к горелкам ГС-53 и ГСМ-53. Вставные резаки особенно удобны при выполнении монтажных и строительных работ, когда сравнительно часто переходят от сварки к резке и обратно.

В табл. 11 приведены общие сведения о резаках.

Характеристика резаков для кислородной резки

Толщина разрезаемой стали, мм

Расход газа, м 3 /ч

Для заменителей ацетилена

Пропанобутановая смесь 0,4—0,7

Редукторы предназначены для понижения давления газа, отбираемого из баллона, до рабочего, требующегося при сварке или резке, и поддержания этого давления постоянным, независимо от давления в баллоне и расхода газа.

1. Какие металлы можно подвергать кислородной резке?

2. Где применяют газовую сварку?

3. Какие газы используют для газовой резки и сварки металлов?

4. В какие цвета окрашивают баллоны с газами?

5. Какое основное оборудование применяют для газовой сварки и резки металлов?

6. Какие используют типы горелок и резаков?

Все материалы раздела «Сварка труб» :

Газовая сварка и резка металлов

ГАЗОВАЯ СВАРКА И РЕЗКА МЕТАЛЛОВ

Лабораторная работа №4

1.1. Основные понятия

При газовой сварке для расплавления металла применяют высокотемпературное пламя, которое получается при сжигании горючего газа в кислороде на выходе из мундштука горелки. В качестве горючего газа используется чаще всего ацетилен (С2Н2), вследствие его технико-экономических преимуществ, одним из которых является наиболее высокая температура пламени (C31500 С). Таким пламенем можно сваривать углеродистые и низколегированные стали толщиной 0,5 — 12мм.

С2Н2 — это бесцветный газ с характерным запахом, благодаря примесям сернистого и фтористого водорода. Он взрывоопасен.

Иногда для сварки и, особенно для резки используют другие горючие газы. В этих случаях кислород способствует интенсивному горению горючего газа и получению высокой температуры сварочного пламени.

1.2. Строение газосварочного пламени

Ацетилено-кислородное пламя бывает нормальным, окислительным науглероживающим. Тип пламени достигается соотношением газов, которое регулируется вентилями. Для образования пламени при использовании инжекторной горелки, необходимо сначала открыть кислородный вентиль. а затем ацетиленовый.

Нормальное пламя (рис.4.1) достигается подачей в горелку 1,1÷1,2 объема кислорода на один объем С2Н2:

— первая зона представляет собой смесь С2Н2 с кислородом, истекающая из горелки. Она видна в пламени как белое яркое пятно (ядро);

— вторая зона представляет собой результат неполного сгорания С2Н2. Она видна в пламени как слабо-фиолетовый ореол первой зоны и характеризуется наличием свободного водорода и окиси углерода. Вторая зона называется восстановительной;

— третья зона (факел) имеет пурпурно-фиолетовый цвет и называется окислительной зоной.

Рисунок 4.1. Строение газосварочного

Окислительное пламяобразуется при чрезмерном избытке кислорода. При этом резко сокращается пламя, ядро заостряется, вторая зона пропадает. Окислительное пламя при сварке не применяется, но пригодно для резки.

Науглероживающее пламяполучается при избытке С2Н2. При этом пламя и ядро увеличивается, вторая зона пропадает, и пламя становится коптящим. Имеющийся свободный углерод второй зоны будет вступать в реакцию с ванной жидкого металла и будет науглероживать ее. Это пламя применяется для сварки чугунов, цветных металлов и некоторых сталей.

1.3.Оборудование и инструмент газовой сварки

В оборудование поста газосварщика входят: газовые или ацетиленовые баллоны, ацетиленовые генераторы, газовые редукторы. сварочные горелки, шланги для подвода газов и стол.

Газовые баллоны наиболее распространены водяной емкости 40л, диаметром 214÷220 мм, высотой 1390 мм и весом 50÷60 кг. Газовая емкость баллона 6 м3 при давлении 15 МПа. Окрас баллонов зависит от транспортируемого газа: кислород – голубой цвет с надписью черными буквами; С2Н2 – белый цвет с надписью красными буквами. Ацетиленовый баллон конструктивно отличается от кислородного тем, что он заполняется пористой массой, пропитанной ацетоном. а для уменьшения взрывоопасности имеет стальной вентиль.

Газовые редукторы применяют для питания сварочных постов газом из баллона. Они снижают давление газа до рабочего, поддерживают его постоянным и обеспечивают легкую регулировку рабочего давления.

Редукторы бывают прямого и обратного действия, различие между которыми состоит в том, что в первом случае газ из камеры высокого давления стремится открыть клапан, закрывающий отверстие камеры низкого давления, а во втором случае – закрывать клапан. Редукторы окрашены в цвет баллона, снабжены двумя манометрами, один из которых показывает давление газа в баллоне, другой – рабочее давление газа.

Ацетиленовые генераторы предназначены для получения С2Н2 разложением водой карбида кальция СаС2 по реакции:

СаС2 + 2Н2О = С2Н2 + Са (ОН)2 +Q

Теоретически для разложения 1 кг СаС2 надо затратить 0,37м3 С2Н2. 1,156 кг гашеной извести и более 400 ккал тепла.

Ацетиленовые генераторы различаются:

— по производительности: от 1 до 80 м3/ч;

— по ряду установок: стационарного и передвижного типа;

— по принципу взаимодействия карбида кальция с водой: вода на карбид, вода на карбид –вытеснение, карбид в воду, вытеснение, сухого разложения.

На рисунке 4.2 приведена схема ацетиленового генератора системы вода на карбид. Воду периодически подают на карбид, который находится в корзинке 1. Корзинку помещают в горизонтальную цилиндрическую реторту 2, герметически закрывающуюся снаружи. На пути следования газа от генератора к сварочной горелке устанавливают предохранительные водяные затворы 3, предотвращающие проникание кислородно-ацетиленового пламени в ацетиленовый генератор при его обратном ударе.

Рисунок 4.2. Схема ацетиленового

генератора системы вода на карбид

На рисунке 4.3 предоставлена схема стационарного ацетиленового генератора низкого давления типа ГНВ — 1,25, производительностью 1,25 м3/ч. Генератор состоит из верхней и нижней частей, разделенных перегородкой 6. В нижней части вварена реторта 3, в которой находится корзина 2 для карбида кальция. Имеются также вытеснитель 11, измеритель уровня воды 8, шланги для подачи воды 4 и отвода ацетилена 10, краны для воды 5 и газа 12. Все генераторы снабжены предохранительными водяными затворами.

Для подготовки генератора к работе необходимо открыть крышку 1 реторты и загрузить карбид кальция в корзину, после чего плотно закрыть крышку. Закрыть кран 5 и открыть кран 12. Корпус генератора заполняется водой до уровня шайбы-измерителя 8.

Для пуска генератора необходимо закрыть кран 12 и открыть кран 5. Вода через шланг 4 попадает в реторту и смачивает карбид кальция, а образующийся С2Н2 через трубку 7 собирается в газосборнике 15, из него по трубе 9 при открытом кране 12 поступает в предохранительный водяной затвор и далее идет к сварочной горелке.

Рисунок 4.3. Схема стационарного ацетиленового

генератора типа ГНВ — 1,25

В процессе выполнения газовой сварки возможны обратные удары. Обратный удар — это распространение взрывной волны или пламени в направлении от горелки к источнику горючего газа. Причинами обратного удара могут быть:

— значительный избыток кислорода (большое давление, при котором скорость сгорания горючего газа превышает скорость истечения газа из горелки);

— закупорка мундштука наконечника горелки. Это происходит в результате разбрызгивания металла и попадания горячей капли в выходное отверстие мундштука;

— нагрев наконечника, при котором С2Н2 взрывается внутри горелки.

Для защиты генераторов от обратных ударов применяются предохранительные, чаще всего водяные, затворы. Действие водяного затвора открытого и закрытого типов основано на том, что взрывная волна и пламя, движущиеся навстречу потоку горючего газа, выводятся в атмосферу или гасятся внутри затвора.

Для стационарного ацетиленового генератора типа

ГНВ — 1,25 используется водяной затвор открытого типа. Затвор через воронку 13 заполняют водой до уровня контрольного крана 19. При нормальной работе С2Н2 проходит по газоотводной трубке 17, находящейся в предохранительной трубе 14 корпуса 16, через слой воды и накапливается в верхней части корпуса. Для предотвращения выхода газа в атмосферу служит рассекаИз верхней части С2Н2 через ниппель 18 поступает к сварочной горелке. При обратном ударе взрывная волна давит на воду, которая заходит в отверстие 21 газоподводящей трубки и создает водяную пробку, преграждая доступ взрывной волны в газопроводящую трубку. Смесь сгорающего газа с водой поднимается через зазор между газопроводящей и предохранительной трубками в воронку. Газ выходит в атмосферу, а вода возвращается в корпус. После каждого удара надо проверять уровень воды в затворе и, в случае надобности, доливать ее.

Сварочные горелки по принципу действия подразделяются на горелки равного давления (безинжекторные) и горелки низкого давления (инжекторные).

В промышленности наибольшее применение получила инжекторная горелка, так как она более безопасна и работает на

низком и среднем давлении (рис.4.4). Кислород под давлением от 0,1 до 0,4 МПа через регулировочный вентиль 6 и трубку 7 подается к инжектору 5. Выходя с большой скоростью из узкого канала инжекторного конуса, кислород создает значительное

Рисунок 4.4. Инжекторная горелка

разряжение в камере 4 и засасывает горючий газ, поступающий

через вентиль 8 в ацетиленовые каналы горелки 9 в камеру смешения 3, где образуется горючая смесь. Затем горючая смесь поступает по наконечнику 2 к мундштуку 1, из которого на выходе при сгорании образуется сварочное пламя.

Таблица 4.1. Техническая характеристика горелки типа ГС–53

Горелки этого типа обычно имеют семь номеров сменных наконечников с различными диаметрами выходных отверстий инжектора и мундштука, что позволяет регулировать мощность ацетилено-кислородного пламени (таблица 4.1).

В безинжекторных горелках ацетилен и кислород поступают при одинаковом давлении от 0,5 до 2 МПа. Эти горелки просты по конструкции и обеспечивают постоянство состава горючей смеси, но необходимость подачи горючего газа сравнительно большим давлением ограничивает их применение.

1.4. Резка металла. оборудование и инструмент

для кислородной резки

Для металла и применяют следующие виды сварки: кислородную, кислородно-флюсовую, плазменно-дуговую, дуговую с электродом и др. Наибольшее распространение получила кислородная и плазменная резка, которая подразделяется на разделительную, цель которой – отделить одну часть металла от другой, и поверхностную (огневую), цель которой – срезать слой металла.

Процесс газоплазменной кислородной резки основан на сжигании металла в среде кислорода, при котором пламя доводит металл до температуры горения, а мощная струя кислорода сжигает его и удаляет образовавшийся шлак. Количество выделяемого тепла при сжигании металла достаточно велико. Это позволяет горячему стекающему шлаку разогревать лежащие ниже слои металла (более 1 мм).

Металл, подлежащий кислородной резке, должен удовлетворять следующим условиям:

— температура воспламенения металла в кислороде должна быть ниже температуры его плавления. Этому условию удовлетворяют стали, содержащие до 0,7 % углерода. Обычная резка металлов с большим содержанием углерода невозможна. То же происходит и при резке легированных сталей. с увеличением содержания примесей ухудшаются условия резки даже при малом содержании углерода;

— температура плавления окислов металла должна быть ниже температуры плавления основного металла. Чугуны и цветные металлы не удовлетворяют этому условию, а, следовательно, обычным способом не режутся;

— разрезанный металл должен обладать минимальной теплопроводностью.

Для резки используется такое же оборудование, как и для сварки, за исключением горелки, вместо которой применяется резак (рис.4.5).

Рисунок 4.5. Кислородный резак

В резаке конструктивно объединены подогревающая часть и режущая. Подогревающая часть аналогична сварочной горелки. Режущая часть состоит из дополнительной трубки 4 для подачи режущего кислорода. В мундштуке находится два концентрически расположенных отверстия для выхода подогревающего пламени 1 и режущей струи 2. Мундштук резака 3 образует прямой угол со стволом. При замене ацетилена другими горючими газами в резаке увеличивают сечения каналов инжектора и смесительной камеры. Ручная резка вследствие неравномерности перемещения резака и вибрации режущей струи не обеспечивает высокого качества поверхности реза, поэтому полость реза механически обрабатывают.

По назначению резаки подразделяются на универсальные, позволяющие производить разделительную резку различных фигур в любом направлении, и специальные, предназначенные для определенных операций (для вырезки отверстий и т. п.), а также для поверхностной резки.

1.5. Режим газовой сварки

Расход горючего газа и кислорода , дм3/час определяется по формуле:

где k – удельный коэффициент:

— для низкоуглеродистых сталей k = 80÷150;

— для легированных сталей k = 70÷120;

— для чугуна k = 150÷200

S – толщина свариваемых деталей, мм.

где w – отношение объема кислорода к ацетилену: w = 1,1÷2,5

Выбор типа горелки и номера наконечника производится исходя из данных, определяемых по формулам (4.1) и (4.2) и таблице 4.1.

Способ сварки определяется в зависимости от толщины свариваемых деталей.

Левый способ сварки применяется при сварке тонких листов до 5мм и легкоплавких металлов. Горелку перемещают справа налево, а присадочную проволоку передвигают спереди сварочного пламени. Мощность горелки при левой сварке устанавливается от 100 до 130 дм3 ацетилена в час на 1 мм толщины металла. Диаметр присадочной проволоки равен

Правый способ сварки применяют при толщине металла свыше 5 мм. При сварке стали толщиной до 6мм обеспечивается полный провар без скоса кромок. Горелку двигают слева направо, а присадочную проволоку передвигают позади сварочного пламени. Мощность горелки устанавливается 120-150 дм3 ацетилена в час на 1 мм толщины металла. Диаметр присадочной проволоки равен S /2 (мм).

Угол наклона мундштука горелки к поверхности свариваемого металла определяют по рисунку 4.6. С увеличением угла увеличивается количество тепла, передаваемого от пламени металлу (увеличивается скорость нагрева).

Рисунок 4.6. Угол наклона горелки к поверхности

Скорость сварки, V. м/час определяется по формуле:

где В – коэффициент, учитывающий способ сварки:

— для левой сварки В =14;

— для правой сварки В =18.

S – толщина свариваемых деталей, мм.

Общее время, T. час, затрачиваемое на сварку, рассчитывается по формуле:

где t газ – основное время, затрачиваемое на плавление

a – коэффициент использования сварочного поста:

Основное время t газ определяется по формуле:

где b – коэффициент, учитывающий удельный расход С2Н2, по

количеству равен мощности горелки, т. е. расходу

ацетилена в дм3 в час на 1 мм толщины металла;

Q н – количество наплавленного металла в час, г:

где Vн – объем наплавленного металла, см3;

r – плотность наплавленного металла, r = 7,85 г/см3.

2.1. Цель и задачи лабораторной работы

В лабораторной работе необходимо: изучить устройство сварочного пламени; сущность процесса газовой сварки; оборудование поста газовой сварки и резки металлов; выполнить типовое задание.

2.2.1. Ознакомиться с инструкцией по технике безопасности и

расписаться в журнале.

2.2.2. Получить индивидуальное задание (приложение Б).

2.2.3. Изучить принцип работы оборудования и конструкции

инструментов для газовой сварки и резки металлов. 2.2.4. Выполнить схемы работы оборудования и эскизы

2.2.5. Согласно индивидуального задания назначить режимы

газовой сварки: способ сварки; наклон горелки; диаметр

присадочной проволоки; скорость сварки; время,

затраченное на сварку. Результаты свести в таблицу 4.2.

2.2.6. Составить отчет о работе.

Таблица 4.2. Технологические параметры режима сварки

Технология газовой сварки металлов: материалы, техника

Такому способу соединения металлических деталей, как газовая сварка, уже более сотни лет. На протяжении этого времени данная технология продолжает успешно совершенствоваться, хотя другие методы сварки, в которых используется электрическая дуга, развиваются более активно и вытесняют сварку, в которой используется газовая горелка.

Газовая сварка и резка металлов

Плюсы и минусы газовой сварки

Такой метод соединения металлов, как газовая сварка, предполагает плавление соединяемых материалов, в результате чего формируется гомогенная структура. Горение газа, за счет которого и осуществляется нагрев и расплав металла, обеспечивается за счет введения в газовую смесь чистого кислорода. Такой метод соединения металлов отличается целым рядом преимуществ.

  • Этот способ сварки не требует использования сложного оборудования (сварочного инвертора или полуавтоматического аппарата).
  • Все расходные материалы для осуществления такой сварки несложно приобрести.
  • Газовая сварка (соответственно, и газовая сварка труб) может выполняться даже без мощного источника энергии и порой без специальных защитных средств.
  • Процесс такой сварки хорошо поддается регулированию: можно устанавливать требуемую мощность пламени горелки, контролировать степень нагрева металла.

У данного метода есть и недостатки.

  • Металл нагревается очень медленно, в отличие от использования электрической дуги.
  • Зона тепла, которая формируется газовой горелкой, является очень широкой.
  • Очень сложно концентрировать тепло, создаваемое газовой горелкой, оно является более рассеянным, по сравнению с электродуговым способом.
  • Газовую сварку можно отнести к достаточно дорогостоящим методам соединения металлов, если сравнивать ее с электродуговой сваркой. Стоимость затраченного кислорода и ацетилена значительно перекрывает цену электричества, затрачиваемого для сварки однотипных деталей.
  • При сварке толстых металлических деталей значительно снижается скорость выполнения соединения. Обусловлено это тем, что концентрация тепла при использовании газовой горелки очень низкая.
  • Газовая сварка плохо поддается автоматизации. Механизировать можно лишь процесс газовой сварки тонкостенных труб или резервуаров, который выполняется с использованием многопламенной горелкой.

Газовая сварка и резка металлов

Газовая сварка трубы из нижнего положения

Материалы для выполнения сварки с использованием газа

Технология газовой сварки предполагает использование различных типов газов, выбор которых зависит от целого ряда факторов.

Одним из газов, используемых для сварки, является кислород. Характеризуется этот газ отсутствием цвета и запаха, он выступает в качестве катализатора, активизируя процессы плавления соединяемого или разрезаемого материала.

Для того чтобы хранить и транспортировать кислород, используются специальные баллоны, в которых он содержится под постоянным давлением. При контакте с техническим маслом кислород может воспламениться, поэтому следует исключить саму возможность такого контакта. Баллоны, в которых содержится кислород, необходимо хранить в помещениях, защищенных от источников тепла и солнечного света.

Получают сварочный кислород путем его выделения из обычного воздуха, для чего используются специальные устройства. В зависимости от степени своей чистоты кислород бывает трех типов: высший (99,5%), первый (99,2%) и второй (98,5%) сорт.

Для различных манипуляций с металлами (сварки и резки) также применяется бесцветный газ ацетилен C2H2. При определенных условиях (давлении, превышающем 1,5 кг/см2 и температуре свыше 400 градусов) данный газ может самопроизвольно взорваться. Получают ацетилен при взаимодействии карбида кальция и воды.

Газовая сварка и резка металлов

Устройство ацетиленового редуктора

Преимущество использования ацетилена при сварке металлов заключается в том, что температура его горения позволяет без проблем осуществлять этот процесс. Между тем использование более дешевых газов (водород, метан, пропан, керосиновые пары) не дает возможности получить такую высокую температуру горения.

Проволока и флюс для выполнения сварки

Для осуществления сварки металлов, кроме газа, необходимы также проволока и флюс. Именно за счет этих материалов создается сварочный шов, формируются все его характеристики. Проволока, которая используется для сварки, должна быть чистой, без признаков коррозии и краски на ее поверхности. В отдельных случаях в качестве такой проволоки можно использовать полоску того же металла, который подвергается свариванию. Для того чтобы обеспечить защиту сварочной ванны от внешних факторов, необходимо использовать специальный флюс. В качестве такого флюса часто используются борная кислота и бура, которые наносятся непосредственно на поверхность свариваемого металла или на используемую для сварки проволоку. Без флюса может выполняться газовая сварка углеродистой стали. а при соединении деталей из алюминия, меди, магния и их сплавов такая защита необходима.

Оборудование для газовой сварки

Технология газовой сварки предполагает использование определенного оборудования.

Газовая сварка и резка металлов

Оборудование необходимое для сварки

Водяной затвор необходим для обеспечения защиты всех элементов оборудования (генератор ацетилена, трубы) от обратной тяги огня из горелки. Такой затвор, вода в котором должна находиться на определенном уровне, размещается между газовой горелкой и генератором ацетилена.

Баллон, в котором содержится газ

Такие баллоны окрашиваются разной краской в зависимости от того, какой газ в них планируется хранить. Между тем верхняя часть баллона не красится, чтобы исключить контакт газа с компонентами краски. Следует также иметь в виду, что на баллоны, в которых хранится ацетилен, нельзя устанавливать вентили из меди, так как это может привести к взрыву газа.

Он используется для снижения давления газа, выходящего из баллона. Редукторы могут быть прямого или обратного действия, а для сжиженного газа используются модели с оребрением, которые исключают его вымерзание при выходе.

Газовую сварку невозможно выполнять без использования специальных шлангов, по которым может подаваться как газ, так и горючие жидкости. Такие шланги делятся на три категории, маркируемые 1) красной полосой (работают при давлении до 6 атмосфер), 2) желтой полосой (для подачи горючих жидкостей), 3) синей полосой (работают при давлении до 20 атм).

Газовая сварка и резка металлов

Устройство газосварочного резака

Смешивание газов и их горение обеспечивается за счет использования горелки, которая может быть инжекторного и безинжекторного типа. Классифицируются горелки и по своей мощности, которая характеризует количество газа, пропускаемого в единицу времени. Так, бывают горелки большой, средней, малой и микромалой мощности.

Газовую сварку осуществляют на специально обустроенном месте, которое называется постом. По сути, таким местом является стол, который может быть с поворотной или фиксированной столешницей. Этот стол, оснащенный вытяжной вентиляцией и всем необходимым для хранения вспомогательного инструмента, значительно облегчает труд сварщика.

Особенности выполнения газовой сварки

Регулировка параметров пламени осуществляется при помощи редуктора, который позволяет менять состав газовой смеси. При помощи редуктора можно получать пламя трех основных типов: восстановительное (используемое для сварки практически всех металлов), окислительное и с повышенным количеством горючего газа. При сварке металлов в расплавленной ванне протекают одновременно два процесса – окисление и восстановление. При этом при сварке алюминия и магния окислительные процессы протекают активнее.

Сам сварочный шов и участок, прилегающий к нему, характеризуется разными параметрами. Так, участок металла, прилегающий к шву, отличается минимальной прочностью, именно он наиболее склонен к разрушению. Прилегающий к данной зоне металл имеет структуру с крупными зернами.

Газовая сварка и резка металлов

Схема газовой сварки

Чтобы улучшить качество шва и зоны, которая к нему прилегает, выполняют дополнительный нагрев или так называемую термическую ковку металла.

Технологии сварки различных металлов имеют свои нюансы.

  • Газовую сварку деталей из низкоуглеродистой стали выполняют с помощью любого газа. В качестве присадочного материала при сварке таких сталей используется проволока из стали, содержащей небольшое количество углерода.
  • Методы сварки легированных сталей выбираются в зависимости от их состава. Так, нержавеющие жаропрочные стали варятся с использованием проволоки, содержащей хром и никель, а отдельные марки требуют применения присадочного материала, дополнительно содержащего молибден.
  • Чугун варится науглероживающим пламенем, которое предотвращает пиролиз кремния и образование зерен хрупкого белого чугуна.
  • Для сварки меди необходимо использовать пламя большей мощности. Кроме того, по причине повышенной текучести меди детали из нее сваривают с минимальным зазором. В качестве присадочного материала используется проволока из меди, а также флюс, который способствует раскислению металла шва.
  • При сварке латуни есть риск улетучивания цинка из ее состава, что может привести к повышенной пористости металла шва. Чтобы избежать этого, в пламя горелки подают больше кислорода, а в качестве присадки используют латунную проволоку.
  • Сварка бронзы осуществляется восстановительным пламенем, которое не выжигает из этого сплава олово, алюминий и кремний. В качестве присадки применяется проволока из бронзы похожего состава, в которой дополнительно содержится кремний, способствующий раскислению металла шва.

Как выполняется газовая сварка в полуавтоматическом режиме

Для полуавтоматической технологии газовой сварки необходимо использование электрической дуги и защитного газа, что делает этот метод соединения металлов гибридным.

Данная технология, если ее разобрать подробнее, выглядит следующим образом:

  • включение устройства;
  • продевание проволоки через отверстие, расположенное в горелке;
  • выставление при помощи редуктора требуемого давления газа;
  • установка требуемой скорости подачи проволоки;
  • выставление всех остальных параметров сварки (напряжения и силы тока);
  • расположение горелки под требуемым углом перед началом сварки.

На каждый из параметров сварки, выполняемой полуавтоматическим способом, есть параметры, которые оговариваются соответствующими ГОСТами:

  • давление, выдаваемое редуктором;
  • параметры ацетиленового генератора;
  • тип используемых шлангов;
  • требования к баллонам для газа;
  • тип используемых для сварки горелок;
  • тип проволоки, используемой для сварки.

Внимание, только СЕГОДНЯ!
Закладка Постоянная ссылка.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *