Хим никель

Этот сайт посвящен технологии химического никелирования. Традиционно считается, что химическое никелирование — процесс капризный и дорогой. Я уверен, что это устаревший взгляд и готов познакомить Вас с новой технологией химического никелирования НСА- 10 и не только с ней.

Мы также производим ванны химического никелирования ВХН-2. Их отличает высокое качество, удобство работы и очень привлекательная цена.

В разделе «Подготовка алюминия» вы найдете информацию о растворе никелевой цементации ЮЛА-10-50. При его использовании химическое никелирование алюминия становится простым и технологичным.

В «Нормативная документация» находятся ТИ на все композиции и калькулятор с помощью которого, вставив объем Вашей ванны и нужную толщину покрытия, Вы получите стоимость электролита и площадь поверхности которую можно покрыть.

Всю нашу продукцию мы поставляем в любую точку Российской Федерации.

В «Вопросы-ответы9quot; мы выкладываем то, чем интересовались слушатели на курсах повышения квалификации в РХТУ им Д.И. Менделеева и ответы на запросы предприятий.

В «Статьях9quot; есть интересные исследования покрытий.

Спрашивайте. Пишите. Звоните.

С уважением, Глеб Гаврилин РХТУ им Д.И.Менделеева

Состав раствора для никелирования.

Никелирование химическое.

Наибольшее распространение нашли химические покрытия никелем, медью, серебром, палладием, кобальтом и реже оловом, хромом и другими металлами.

Химическое никелирование. Восстановление ионов никеля из растворов происходит за счет окисления гипофосфита по суммарной реакции

При этом восстановление может протекать следующим образом:

Ni 2+ +2H = Ni + 2H +

Выделяющийся водород восстанавливает также фосфит до фосфора, поэтому никелевое покрытие содержит 6 — 8% фосфора, который во многом определяет его специфические свойства (табл. 24).

24. Свойства химического и гальванического покрытия никелем

Несмотря на то, что никель, осажденный химическим способом, обладает значительной коррозионной стойкостью, он не может быть применен для защиты от коррозии в среде азотной и серной кислот. После термической обработки такой никель имеет твердость HV 1000-1025.

В основном технологический процесс никелирования сводится к следующему. Детали из стали, меди и ее сплавов подготовляют так же, как и под гальванические покрытия.

Никелирование ведут в растворе следующего состава (г/л):

Никель сернокислый 20

Гипофосфит натрия 25

Натрий уксуснокислый 10

Тиомочевина (или малеиновый ангидрид) 0,003 (1,5 — 2)

Температура 93 ± 5°С, скорость осаждения 18 мкм/ч (при &09deg;С и плотности загрузки 1 дм 2 /л), рН = 4,1 ÷ 4,3.

Детали в процессе никелирования необходимо встряхивать. Допускается замена тиомочевины малеиновым ангидридом в количестве 1,5 — 2 г/л.

Для инициирования осаждения никеля на деталях из меди и ее сплавов необходимо обеспечить их контакт со сталью или алюминием. Процесс ведут в фарфоровых емкостях или стальных, футерованных полиэтиленовой пленкой, а также в емкостях из силикатного стекла.

При скоростном осаждении и при большой плотности загрузки деталей несложного профиля рекомендуется применять раствор следующего состава (в г/л):

Никель сернокислый 60

Гипофосфит натрия 25

Натрий уксуснокислый 12

Кислота борная 8

Аммоний хлористый 6

Температура раствора 93 ± 5°С, скорость осаждения 18 мкм/ч (при &09deg;С и плотности загрузки 3 дм 2 /л), рН = 5,6 ÷ 5,7.

После химического никелирования детали промывают в уловителе, затем в проточной холодной и горячей воде, сушат при 90 ± 10°С в течение 5 — 10 мин и термически обрабатывают при 210 ± 10°С в течение 2 ч (с целью снятия внутренних напряжений и повышения прочности сцепления с основой). Далее в зависимости от условий эксплуатации детали покрывают лаком, обрабатывают гидрофобной жидкостью (ГКЖ и др.) или без обработки подают на сборку.

Основными причинами некачественного покрытия при химическом никелировании являются:

1) самопроизвольное осаждение никеля в виде черных точек из-за плохой очистки ванн, наличия следов никеля или других очагов кристаллизации на дне и стенках ванны, а также из-за перегрева раствора;

2) наличие непокрытых мест на деталях сложной конфигурации из-за образования газовых пузырей и неравномерного омывания деталей раствором;

3) частичное отложение никеля на внутренней поверхности ванны из-за касания деталями стенок или дна ванны в процессе никелирования;

4) снижение кислотности раствора (растрескивающееся, хрупкое покрытие);

5) увеличение кислотности раствора (покрытие грубое и шероховатое).

Значение рН корректируют, добавляя 10%-ный раствор уксусной кислоты или едкого натра.

Детали из кремния никелируют в щелочных растворах следующего состава (в г/л):

Хлорид никеля 30

Гипофосфит натрия 10

Цитрат натрия 100

Хлорид аммония 50

Скорость осаждения 8 мкм/ч, рН = 8÷10 (за счет введения NH4 OH).

Порядок химического никелирования керамики: обезжиривание в щелочных растворах и химическое растравливание поверхности (смесь серной и плавиковой кислот), сенсибилизация в растворе (150 г/л) гипофосфита натрия при &09deg;С, никелирование в щелочной ванне. Толщина покрытий деталей в зависимости от условий их эксплуатации указана в табл. 25.

25. Значения толщины покрытий в зависимости от условий эксплуатации

Хим никель

Содержание фосфора в осадках зависит от рН электролита и длительности процесса никелирования. С увеличением толщины покрытия содержание фосфора в них увеличивается. Причиной тому является истощение раствора и снижение рН в результате образования соляной или серной кислоты.

Так, при рН = 5,5 в осадках содержится 7,5% фосфора, а при рН = 3,5 14,6%. Повышение твердости покрытия до 1100-1200 кгс/мм 2 при 200-300°С вызывается выделением фазы Ni3 P, которая кристаллизуется в тетрагональной системе с постоянной кристаллической решетки а = b = 8,&549bull; 10 -10 м и с=4,384•10 -10 м. Максимум твердости никеля соответствует 750°С. Модуль упругости при этом составляет 19000 кгс/мм 2. Предел прочности при растяжении равен 45 кгс/мм 2 (при 20°С) и 55 кгс/мм 2 после термообработки при 200°С в течение 1 ч. Коэффициент трения покрытия (при нагрузке > 10 кгс) после его нанесения такой же, как и блестящего хрома. Удельный износ никелевого покрытия при 100°С составляет 2•10 -3 мм 3 /м.

При перемешивании кислого раствора увеличивается блеск осадков и скорость осаждения. Если процесс осаждения прерывается на несколько минут, то детали можно загружать в ванну без дополнительного активирования. При длительном перерыве (24 ч) детали следует хранить в холодном растворе никелирования, а затем переносить в рабочую ванну.

Скорость осаждения металла тем меньше, чем ниже рН раствора. Кроме того, скорость является функцией отношения Ni 2+. Н2 РО — 2. Для нормальной кислой ванны оно должно колебаться в пределах 0,25 — 0,60 (для буферированной ацетатом 0,3—0,4).

При наличии солей аммония уменьшается скорость осаждения. Во вновь приготовленных растворах скорость осаждения сначала высокая, а затем по мере старения падает. Так, в ацетатных и цитратных растворах она уменьшается с 25 до 2 — 5 мкм/ч. Наиболее оптимальная скорость осаждения

Блеск покрытия определяется качеством подготовки поверхности основы, которую следует полировать. В щелочных ваннах покрытия получается более блестящими, чем в кислых. Покрытия, содержащие <= 2% фосфора — матовые, 5% фосфора — полублестящие и => 10% фосфора — очень блестящие, но с желтоватым оттенком. Разброс по толщине покрытия 30 мкм даже на деталях сложной конфигурации составляет, например, не более 1—2 мкм. Когда ванна работает при постоянном значении рН, количество фосфора в покрытии пропорционально концентрации гипофосфита в ванне.

Нормальное содержание фосфора в покрытии 5 — 6%. Содержание фосфора тем выше, чем больше отношение H2 PO2 :Ni 2+. На низкоуглеродистых сталях адгезия никелевых покрытий очень высокая (2200 — 4400 кгс/см 2 ), но ухудшается, если температура раствора понижается до 75°С. Адгезия на сталях, легированных Al, Be, Ti, и сплавах на основе меди зависит от способа обработки поверхности и улучшается последующей термообработкой при 150-210°С.

Первым признаком нарушения стабильности состава раствора является образование белой пены вследствие чрезмерного выделения водорода во всем объеме ванны. Затем появляется очень мелкая черная взвесь Ni-P, которая ускоряет реакцию разложения раствора.

Причинами преждевременного разложения раствора могут быть: слишком быстрое введение щелочи и гипофосфита (следует добавить разбавленного водного раствора при интенсивном перемешивании); локальный перегрев; слишком высокое содержание гипофосфита (нужно понизить рН и температуру); внесение палладия в раствор с деталями, активированными в PdCl2. неправильное соотношение суммарной площади деталей к объему раствора.

Уровень раствора в ванне необходимо поддерживать постоянным, так как понижение его за счет испарения приводит к концентрированию раствора. В процессе покрытия деталей не следует допускать отключения нагревателей (пар, теплоэлектронагрев и др.).

В отличие от гидрозина, гипофосфит натрия обладает важным преимуществом, так как в осадке содержится в 8 — 10 раз меньше газов. Добавка тиосульфата натрия способствует снижению пористости никеля. Так, при толщине 20 мкм она снижается от 10 до 2 пор/см 2. При выборе материала для ванны следует учитывать, что растворы испаряются при температуре, приблизительно равной температуре кипения, и имеют высокую чувствительность к различным загрязнениям. Кроме того, материал должен быть стойким к HNO3. так как периодически со стенок ванны приходится удалять осадки никеля. Ванны объемом 20 л изготовляют из пирекса, а большего — из полированной керамики. Внутреннюю поверхность стальных емкостей покрывают стекловидной эмалью. Ванны из коррозионно-стойкой стали необходимо пассивировать концентрированной азотной кислотой в течение нескольких часов. Для предотвращения возникновения гальванопар между стальной ванной и покрываемыми деталями ее стенки необходимо футеровать стеклом или резиной. В качестве футеровки в ваннах малой емкости используют полиэтиленовые вкладыши.

После каждой выгрузки деталей электрические нагреватели стержневого типа необходимо протравливать в HNO3 .

Дефектные покрытия с деталей из стали, алюминия и титана следует удалять в концентрированной азотной кислоте при температуре не выше 35°С, с деталей из коррозионно-стойких сталей в 25%-ном растворе HNO3. а с латунных и медных — анодным растворением в H2 SO4 .

С целью улучшения стабильности состава раствора зарубежные фирмы рекомендуют добавлять соли хрома. Пористость покрытий, полученных в растворе, содержащем 10 г/л K3 Fe(CN)6 и 20 г/л NaCl, определяют в течение 10 мин. Поры совершенно отсутствуют при толщине покрытия => 100 мкм.

Петр Степанович Мельников. Справочник по гальванопокрытиям в машиностроении. 1979.

Здравствуйте, у нас стоит процесс химического никелирования НСА-10. В ТИ коррекцию рН рекомендуют делать NaOH. Можно ли его заменить на раствор аммиака?

Нет, нельзя. Так как ухудшится качество покрытия. Никель является комплексообразователем. а аммиак легандом. Меняя концентрацию аммония в электролите, Вы меняете состав комплекса никеля, а как следствие и состав покрытия, в сторону уменьшения фосфора в осаждаемом сплаве. А это ведет к ухудшению коррозионной стойкости, увеличению пористости и уменьшению твердости покрытия.

При химическом никелировании печатных плат в объеме электролита самопроизвольно восстанавливается никель, в виде порошка, что ухудшает качество покрытия. Как от этого избавиться?

Причины этого явления возможны две. Первая — недостаточно тщательная промывка после активации-сенсибилизации в растворе палладия. В следствии чего коллоидный палладий попадая в электролит провоцирует осаждение никеля.

Вторая — низкое качество применяемого электролита никелирования. В плохо стабилизированных электролитах центрами осаждения никеля является мелкодисперсный оксид кремния с высоким поверхностным потенциалом, что приводит к тому же результату. Вам нужна. как минимум, двухкаскадная промывка перед никелированием. И попробуйте применить другой электролит. Интересные исследования электролитов химического никелирования провел ЦПТА (см статью).

Мы покрываем химическим никелем алюминиевые корпуса используя цинкатную обработку. Уже на третью загрузку качество покрытия заметно портится. Оно сереет и даже пачкается. Как этого избежать?

При погружении алюминиевой детали, после цинкатной обработки, в кислый электролит ,цинк с ее поверхности частично растворяется и потом осаждается вместе с никелем, что приводит не только к изменению внешнего вида, но и к серьезному ухудшению свойств покрытия.

Избежать этого можно заменив цинкатную подготовку на цементацию никелем. В ГОСТе приводятся несколько рецептур. Но я рекомендую композицию ЮЛА -50. у нее качество подготовки поверхности выше и цементацию можно проводить при комнатной температуре в отличии от составов приведенных в ГОСТе.

Мы проводим процесс химического никелирования в ванне с футеровкой. Но время от времени никель начинает осаждаться и на футеровку. Скажите, как это возможно, ведь полипропилен является диэлектриком? И как дополнительно защитить ванну?

Увы, никак. Причиной осаждения покрытия является адсорбция на стенки ванны каталитически активных частиц, на них собственно и осаждается никель. А от адсорбции полимер защитить невозможно. Вообще полимеры неподходящий материал для ванн химического никелирования. Гораздо лучше ванны из нержавеющей стали с анодной защитой. Анодная защита, смещая потенциал ванны, исключает осаждение покрытия термодинамически, а хемосорбция диполей воды блокирует процесс адсорбции. Такие ванны надежней и удобней в эксплуатации.

В линии иммерсионного золочения печатных плат имеются две ванны химического никелирования из 2 мм стали SS 316 с нанесённым покрытием ПВДФ толщиной 0,4-0,6 мм.

Объём ванн по 130 л. Обогрев ванны до 85 С осуществляется горячей водой через водяную рубашку. Охлаждение по окончании работы производится также через рубашку водопроводной водой.

В одной из ванн покрытие частично отслоилось, и было удалено примерно на 1/3 площади поверхности стенок и дна. Восстановить покрытие не представляется возможным. Удалить полностью покрытие не повредив нержавейки затруднительно. Есть предложение установить в ванне анодную защиту, не удаляя полностью покрытие. Если отслоение будет продолжаться, то будем срезать отслоившиеся участки. Во второй ванне тоже имеются пока ещё небольшие участки отслоения, но сплошность плёнки не нарушена.

Прошу Вас ответить на следующие вопросы по Хим. Никелю:

1. Возможны ли затруднения с анодной защитой, если часть стенок ванны будет закрыта диэлектрической плёнкой (0,5 мм ПВДФ), постепенно отслаивающейся? Может ли в щелях под отслоившейся плёнкой протекать восстановление никеля на нержавейке?

2. Насколько критична для анодной защиты чистота обработки поверхности? В нашем случае поверхность достаточно гладкая, но не полированная.

3. Количество, форма и расположение электродов (материал 12Х18Н10Т) анодной защиты для ванны 300х735х710 (ДхШхГ)?

4. Источник питания (макс. ток/напряжение)?

5. Рекомендуемые режимы? Стабилизация тока или напряжения?

6. Должна ли анодная защита быть включена в нерабочее время? Раствор может быть охлаждён. Есть возможность сделать рабочей одну ванну с анодной защитой, а вторую для хранения с диэлектрическим покрытием.

1. Сами по себе фрагменты пленки ПВДХ не будут мешать анодной защите, но рано или поздно никель начнет осаждаться на пленке (это неизбежно, особенно в плохо стабилизированных

электролитах), и тогда, есть риск контакта покрытия с металлической частью ванны, что приведет к выключению анодной защиты. Сказать насколько такой сценарий вероятен невозможно, но исключать его нельзя.

2. Чистота обработки поверхности некритична. Защита происходит на микроуровне и морфология поверхности на нее не влияет.

3. Рекомендую расположить два электрода по диагонали.

4. Постоянное напряжение не менее 0,8В

5. Стабилизация напряжения.

6. При хранении раствора в ванне, анодную защиту отключать не рекомендуется.

Р.S. Чтобы исключить риск покрытия ванны, я бы попытался удалить пленку полностью. Царапины (повреждения?) на ванне анодной защите не помешают.

Недавно был в ЦПТА по вопросам травления и обратил внимание на Ваш катод для анодной защиты. Удивила минимальная рабочая площадь – торец 3 мм стержня. Неужели этого достаточно для нормальной работы в ванне с площадью стенок около 0,5 м2?

Блок питания, судя по конструкции (однополупериодный выпрямитель), будет иметь сильные пульсации напряжения. Это тоже подходящий вариант для защиты?

Ток защиты на ванну примерно 1-1,5 мА. Сечения стержня на такой ток хватит с громадным запасом.

Двойной электрический слой (ДЭС) обладает определенной емкостью. Это по сути конденсатор. который сглаживает пульсацию. Так, что половины периода достаточно.

Наше предприятие производит полупроводниковую продукцию. Мы закупаем колпаки для изготовления транзисторов, выполненные из металлического никеля, а также колпаки с покрытием хим.никель.

У нас есть операция маркировки транзисторов маркировочной краской КМ СБС. Дело в том, что перед нанесением маркировки мы обезжириваем детали в холодном трихлорэтилене при перемешивании. Периодически возникают проблемы с нанесением маркировки, бывает, что краска совсем не ложится на поверхность, либо вообще стирается (спирто-бензиновой смесью) после высушивания краски (при температуре 150 0С 2,5 часа). Может, проблема состоит не полностью в обезжиривании поверхности деталей перед нанесением маркировочной краски, но возможно, в холодном трихлорэтилене не полностью очищается поверхность.Не могли бы Вы подсказать, какой-нибудь другой способ обезжиривания, применимый для никелевых деталей.

Здравствуйте. Причина, в недостаточном обезжиривании. Мы пользуются эколайзером с кипящим тетрахлорэтиленом. Дает 100% результат.

Но если сложности возникают не каждый раз, возможно проблема с колпачками из металлического никеля, так как на них может быть технологическая смазка на основе силикона, тогда перед фреоном обработайте их в моющем растворе с КР-15.

И попробуйте Фреон Ф-113, у него растворяющая способность повыше.

Для чего необходимо химическое никелирование?

Никелирование химическое — это сложный процесс, позволяющий покрыть изделия из практически любого металла тонким защитным слоем никеля, повысить при этом коррозионную стойкость и придать поверхности блестящий вид и твердость.

Содержание

  1. Процесс химического никелирования деталей
  2. Никелирование цветных металлов и сплавов
  3. Применение никелированных изделий
  4. Основные выводы по теме

1 Процесс химического никелирования деталей

Свойство никеля создавать на своей поверхности тонкую оксидную пленку, устойчивую к действию кислот и щелочей, позволяет использовать его для антикоррозионной защиты металлов.

Основной метод, применяющийся в промышленности — гальваническое никелирование, но оно требует наличия достаточно сложного оборудования и подразумевает работу с кислотами и щелочами, пары которых выделяются во время работы и могут сильно навредить здоровью человека. Для покрытия стали, алюминия, латуни, бронзы и других металлов может быть применен химический способ, так как он прост в использовании, и этот процесс можно проводить в домашних условиях.

На сегодняшний день существует два основных метода покрытия металлических деталей никелем: гальваническое и химическое. Первый метод требует наличия источника постоянного тока — электролитической ванны с электродами и большого количества химических реактивов. Второй способ намного проще. Для его проведения требуется наличие мерной посуды и эмалированной емкости для нагрева реактивов. Несмотря на всю кажущуюся простоту, это довольно сложный процесс, который требует большого внимания и соблюдения правил безопасности. По возможности проводите реакции в хорошо проветриваемом помещении. Идеальным вариантом будет оборудование рабочего места вытяжкой, ни в коем случае не соединенной с общедомовой вентиляцией. При работе пользуйтесь защитными очками, не оставляйте емкость с реактивами без присмотра.

Хим никель

Покрытие металлических деталей никелем

Основные стадии для произведения химического никелирования следующие:

  1. Для того чтобы никель покрыл поверхность тонким и равномерным слоем, изделие предварительно шлифуют и полируют.
  2. Обезжиривание. Поскольку даже тончайшая пленка жира на поверхности обрабатываемого изделия может вызвать неравномерное распределение никеля по площади детали, последнюю обезжиривают в специальном растворе, состоящем из 25-35 г/л NaOH или KOH, 30-60 г кальцинированной соды и 5-10 г жидкого стекла.
  3. Деталь или изделие, которое необходимо покрыть никелем, промывают в воде, после чего на 0,5-1 минуту погружают в 5% раствор HCl. Данный шаг предпринимается для того, чтобы удалить с поверхности металла тонкий слой окислов, который будет значительно снижать адгезию между материалами. После протравки деталь снова промывают в воде, затем немедленно переносят в емкость с раствором для покрытия никелем.

Собственно никелирование производят при помощи кипячения металлического изделия в специальном растворе, который готовят следующим образом:

  • берут воду (желательно — дистиллированную) из расчета 300 мл/дм 2 площади поверхности детали, включая как внутреннюю, так и внешнюю;
  • воду нагревают до 60°С, после чего растворяют в ней 30 г хлористого никеля (NiCl2 ) и 10 г уксуснокислого натрия (CH3 COONa) на 1 л воды;
  • температуру поднимают до 80°С и добавляют 15 г гипосульфита натрия, затем в емкость с раствором погружают обрабатываемую деталь.

Хим никель

Кипячение металлического изделия

После погружения детали, раствор нагревают до 90-95°С и поддерживают температуру на таком уровне в течение всего процесса никелирования. Если вы увидели, что количество раствора сильно уменьшилось, можно добавить в него предварительно нагретую дистиллированную воду. Кипячение должно проходить не менее 1-2 часов. Иногда для получения многослойного покрытия, изделия из металла подвергают серии коротких (20-30 минут) кипячений, после каждого из которых деталь достают из раствора, промывают и высушивают. Это дает возможность получить слой никеля из 3-4 прослоев, которые суммарно имеют большую плотность и качество, чем одинарный слой той же мощности.

Особенность покрытия стальных изделий в том, что никель осаждается самопроизвольно вследствие каталитического воздействия железа. Для осаждения защитного слоя на цветных металлах используется другой состав.

2 Никелирование цветных металлов и сплавов

Химическое никелирование цветных металлов позволяет создавать защитную пленку на поверхности латуни, меди и бронзы. Для этого деталь сначала обезжиривают раствором, состав которого указан в первом способе, причем снимать оксидную пленку с металла не обязательно. Раствор для никелирования готовят следующим образом: в эмалированную емкость наливают 10% раствор хлористого цинка (ZnCl2 ), который более известен под названием «паяльная кислота». К нему понемногу добавляют сернокислый никель (NiSO4 ) до такой концентрации, при которой раствор окрашивается в зеленый цвет. Состав доводят до кипения, после чего погружают деталь в него на 1,5-2 часа. После того как реакция закончится, изделие достают из раствора и помещают в емкость с меловой водой (готовится способом добавления 50-70 г мела в порошке на 1 литр воды), а затем промывается.

Хим никель

Раствор сернокислого никеля

Никелирование алюминия проходит по схожей технологии, но состав раствора немного другой:

  • 20 г сернокислого никеля;
  • 10 г натрия уксуснокислого;
  • 25 г натрия фосфорноватистокислого;
  • 3 мл тиомочевины концентрацией 1 г/л;
  • 0,4 г фтористого натрия;
  • 9 мл уксусной кислоты.

Хим никель

Обработка деталей из алюминия

Перед обработкой изделия из алюминия погружают в раствор каустической соды, концентрацией 10-15%, и нагретом до температуры 60-70°С. При этом происходит бурная реакция с выделением водорода, пузырьки которого очищают поверхность от окислов и загрязнения. В зависимости от степени загрязненности, детали выдерживают в очищающем растворе от 15-20 секунд до 1-2 минут, после чего промывают в проточной воде и погружают в никелирующий раствор.

3 Применение никелированных изделий

Вследствие никелирования значительно повышаются физико-механические и декоративные свойства металлических изделий. Никель имеет серебристо-белый цвет, на воздухе быстро покрывается незаметной человеческому глазу пленкой окислов, которые практически не меняют его внешнего вида, но при этом надежно защищают от дальнейшего окисления и реакций с агрессивной средой. Никелирование используется для защиты сталей, бронзы, латуни, алюминия, меди и других материалов.

Хим никель

Защита металлических изделий от окисления

Является катодной защитой. Это значит, что при повреждении целостности покрытия, металл начинает реагировать с внешней средой. Для повышения механических свойств защитного слоя, нужно наносить его, точно придерживаясь технологии и последовательности действий. Никель, нанесенный на поверхность со следами загрязнения и ржавчины, с большим количеством неровностей, может начать вспучиваться и отслаиваться в процессе эксплуатации.

Изделия, покрытые никелем, почти ни в чем не уступают хромированным — имеют похожий блеск и твердость. При больших размерах емкостей для химической реакции никелем можно покрывать довольно большие детали, например, автомобильные диски.

4 Основные выводы по теме

Никелирование придает металлу красивый блестящий вид, высокую коррозионную стойкость и повышает твердость поверхности. Детали, покрытые никелем, можно использовать для украшения столбов ограды, если такую предусматривает проект участка. Красиво выглядят и имеют длительный срок эксплуатации различные метизы — крепежные болты, скобы, элементы мебельной фурнитуры. Они могут быть использованы в условиях повышенной влажности, температуры и нагрузки — в местах, где сталь быстро ржавеет и теряет свойства.

Химическое никелирование можно произвести собственноручно, в условиях хорошо проветриваемого гаража или мастерской.

Хим никель

Красивый блестящий вид поверхности

Нежелательно делать описанные технологические операции на кухне, так как испарения любых химических веществ могут быть опасными для здоровья.

Покрытие никелем с помощью химических реактивов не требует высоких энергозатрат, в отличие от гальванического, но позволяет получить достаточно качественное, блестящее и твердое покрытие.

Трубогиб ручной ТР и другие марки – рассматриваем типы этого приспособления Хим никель

В этой статье мы рассмотрим различные механические трубогибы, которые можно использовать руками, применяя только мускульную.

Виды сварочных аппаратов – обзор популярных моделей Хим никель

Статья подскажет вам, какое специальное оборудование имеет смысл приобрести, если вы планируете производить работы по.

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Хим никель

Ленточнопильный станок (ленточные пилы)

  • Хим никель

    Цветные металлы и сплавы

    Хим никель

    Хим никель

    Хим никель

    Хим никель

    Хим никель

    Хим никель

    Конструкционные стали и сплавы

  • Хим никель

    Хим никель

    В основу процесса химического никелирования положена реакция восстановления никеля из водных растворов его солей гипофосфитом натрия. Растворы могут быть щелочными и кислотными. В результате образуется блестящее или полублестящее никелевое покрытие. Структура его аморфная, представляющая собой сплав никеля и фосфора. Пленка никеля без термообработки слабо держится на поверхности основного металла, хотя ее твердость близка к твердости хромового покрытия. Последнее объясняется наличием фосфора. Термическая обработка детали с никелевым покрытием, полученным химическим путем, в значительной степени увеличивает сцепление пленки никеля с основным металлом. Одновременно с этим растет и твердость никеля, достигающая твердости хрома. Термическая обработка заключается в нагреве детали с никелевым покрытием до температуры 350-500° и выдерживании ее при этой температуре не менее 1 ч. При термической обработке некоторых закаленных стальных деталей с никелевым покрытием необходимо учитывать, при какой температуре эти детали отпускались, и не превышать ее при термообработке. Это особенно касается рыболовных крючков. Химическим путем можно покрывать никелем большинство металлов, кроме свинца, олова, кадмия и их сплавов. рассмотрим достоинства и недостатки щелочных и кислотных растворов химического никелирования. Щелочные растворы. Щелочные растворы характеризуются устойчивостью в работе, почти полным отсутствием явления саморазряда, которое представляет собой мгновенное выпадание губчатой массы никеля из раствора, сопровождающееся выбросом кипящей смеси из ванны, что может привести к серьезным ожогам. Явление саморазряда наступает при перегреве раствора. Регулировку температуры при отсутствии термометра ведут по интенсивности выделения газа во время процесса. Если газовыделение с детали не бурное, то можно быть уверенным, что саморазряда не будет. Твердость покрытия из щелочных растворов примерно на 15% ниже, чем из кислотных. Коррозионная стойкость покрытий никелем из щелочных растворов ниже, чем из кислотных. Кислотные растворы. Кислотные растворы также сильно подвержены явлению саморазряда. Поэтому, работая с кислотными растворами, необходимо обязательно соблюдать все меры предосторожности. Для того чтобы читатель мог отличить щелочные растворы от кислотных, цифра, стоящая перед рецептом щелочного раствора, набрана коричневым шрифтом с буквой » щ «.

    Никелирование меди и сплавов.

    Отполированную и обезжиренную медную (латунную, бронзовую и т. д.) деталь перед никелированием декапируют. После декапирования деталь промывают в горячей и холодной воде (касаться руками детали нельзя) и подвешивают в раствор для никелирования. Здесь есть одна тонкость, и если ее не выполнить, процесс осаждения никеля может не пойти. Деталь должна быть подвешена в раствор для никелирования на алюминиевой или железной (стальной) проволоке; в крайнем случае, при опускании детали в раствор ее необходимо коснуться железным или алюминиевым предметом. Эти «священнодействия9quot; необходимы для того, чтобы дать старт процессу никелирования, так как медь имеет сравнительно низкий электроотрицательный потенциал по отношению к никелю. Только присоединение или касание детали более электроотрицательным металлом (алюминий, железо) дает старт процессу осаждения никеля на меди и ее сплавах. Растворы * для химического никелирования меди и ее сплавов:
    1щ. Хлористый никель — 40-50 г/л, хлористый аммоний — 45-55 г/л, лимоннокислый натрий — 40-50 г/л, гипофосфит натрия-10-20 г/л. Температура раствора — 80-88°, скорость осаждения — 8-10 мкм/ч **.
    2. Сернокислый никель — 28-30 г/л, уксуснокислый натрий — 10-12 г/л, гипофосфит натрия-8-10 г/л. Температура раствора — 90-92°, скорость осаждения — 8-10 мкм/ч.
    Приготовление растворов заключается в растворении всех компонентов (кроме гипофосфита натрия) и его нагревании. Гипофосфит натрия вводят в раствор непосредственно перед подвешиванием деталей. Такой порядок приготовления растворов касается всех рецептов для никелирования. Раствор для никелирования разводится в любой эмалированной посуде (миска, глубокая сковорода, кастрюля и т. п.), которая не имеет повреждений на поверхности эмали. От никелирования посуда не портится. Возможный осадок никеля на стенках посуды легко удаляется азотной кислотой (50% -ный раствор). Почти для всех рыболовных приманок процесс никелирования ведут более 1 ч для получения пленки толщиной около10 мкм (0,01 мм). Этого достаточно, чтобы впоследствии полировать пленку, не боясь протереть ее до основного металла. Термообработка никелированных медных (латунных, бронзовых и т. п.) деталей заключается в нагреве их до температуры 350-500° и выдерживании их при такой температуре в течение 1 ч. Необходимо отметить, что на воздухе при температуре выше 380° на поверхности никеля появляются цвета побежалости от золотисто-желтого до фиолетового.

    Никелирование алюминия и его сплавов.

    Никелирование алюминия и его сплавов проводят после двукратной цинкатной обработки. Цинкатную обработку алюминиевых деталей проводят (после полной их предварительной подготовки) в следующих рас творах.
    1. Едкий натр-250 г/л, окись цинка-55 г/л. Температура раствора — 20°C, время обработки — 3-5 с.
    2. Едкий натр-120 г/л, сернокислый цинк-40 г/л. Температура раствора-20°, время обработки-1,5-2 мин.Отдельно в двух частях воды по 0,5 л растворяют едкий натр и сернокислый цинк. Затем оба раствора сливают вместе. Дюралюминиевые детали цинкуются в растворе:
    Едкий натр-10 г/л, окись цинка-5 г/л, сегнетова соль-10 г/л. Температура раствора-20°C, время обработки-1-2 мин.
    Двукратную цинкатную обработку деталей проводят следующим образом. Детали цинкуют, затем подтравливают в течение 10-15 сек. в 15%-ном растворе азотной кислоты и после этого цинкуют вторично. После цинкования деталь сразу же промывают в горячей воде и подвешивают в ванну (миску и т. п.) с одним из растворов:
    1. Хлористый никель — 21 г/л, лимоннокислый натрий — 40 г/л, хлористый аммоний-50 г/л, аммиак (25%)-50 мл/л, гипофосфит натрия — 24 г/л. Температура раствора — 87-90°, скорость осаждения-15-18 мкм/ч.
    2. Хлористый никель-21 г/л, уксуснокислый натрий — 10 г/л, гипофосфит натрия-24 г/л. Температура раствора — 88 — 90°, скорость осаждения — 20-25 мкм/ч.
    3. Сернокислый никель-25 г/л, уксуснокислый натрий-10 г/л, гипофосфит натрия-20 г/л. Температура раствора-90-92°, скорость осаждения — 12-15 мкм/ч.
    4. Уксуснокислый никель — 20-25 г/л, глицин — 15-20 г/л, гипофосфит натрия — 25-30 г/л. Температура раствора — 95-98°C, скорость осаждения- 18-24 мкм/ч.
    Рабочие растворы для никелирования алюминия и его сплавов составляют так же, как и для никелирования меди и ее сплавов. Термообработка никелированных алюминиевых деталей (и из его сплавов) имеет свою специфику. Детали тщательно промывают водой, погружают в нагретое до температуры 220-250° минеральное машинное масло и выдерживают при этой температуре не менее 1 ч. После термообработки детали обезжиривают органическими растворителями.

    Полированные и химически обезжиренные стальные детали промывают в горячей и холодной воде,а затем декапируют. Декапированные детали также промывают в обеих водах и помещают в ванну для никелирования. Растворов для никелирования стали очень много, ниже приводятся наиболее проверенные и зарекомендовавшие себя:
    1щ. Хлористый никель-30 г/л, аммиак (25%)-50 г/л, лимоннокислый натрий-100 г/л, гипофосфит натрия-10 г/л. Температура раствора-90°, скорость осаждения-6-7 мкм/ч, качество покрытия — полублестящее.
    2щ. Хлористый никель — 45 г/л, хлористый аммоний — 45 г/л, лимоннокислый натрий — 45 г/л, гипофосфит натрия — 20 г/л. Температура раствора — 90е, скорость осаждения — 5-8 мкм/ч, качество покрытия — полублестящее.
    3. Сернокислый никель — 20 г/л, уксуснокислый натрий — 8 г/л. гипофосфит натрия — 20 г/л. Температура раствора — 90-92°, скорость осаждения 15 мкм/ч, качество покрытия — блестящее.
    4. Сернокислый никель — 30 г/л, уксуснокислый натрий — 10 г/л, хромовокислый свинец-10 г/л, гипофосфит натрия- 10 г/л. Температура раствора-90°, скорость осаждения 15 мкм/ч, качество покрытия-блестящее, качественное.
    5. Хлористый никель — 30 г/л, оксиацетат натрия — 50 г/л. гипофосфит натрия-10 г/л. Температура раствора-95°, скорость осаждения — 20-25 мкм/ч, качество покрытия — блестящее.
    При термической обработке никелевого покрытия на стали надо знать хотя бы примерно температуру отпуска той или иной детали. Ее обрабатывают при температуре не выше температуры отпуска. Крючки, пружины и т. п. часто встречающиеся в практике рыболова, обычно отпускают при температуре 300-350°. Поэтому термообработку их после никелирования проводят при температуре 300° в течение 2-3 ч (это можно делать в духовке газовой плиты). При покрытии стали никелем очень важно ликвидировать поры в пленке никеля, а они всегда есть. В противном случае за короткий срок ржавчина разрушит никелевое покрытие. Один из методов заключается в следующем. Никелевое покрытие протирают кашицей из окиси магния, замешенного на воде, и деталь сразу же декапируют в 50%-ном растворе соляной кислоты в течение 1-2 мин. При другом методе сталь рекомендуется дважды покрывать никелем. После нанесения обычным порядком первого слоя деталь подтравливают в 50%-ном растворе азотной кислоты в течение 3-5 с, тщательно промывают в горячей и холодной воде и покрывают никелем второй раз. Причем покрытие вторым слоем никеля обязательно ведут из так называемого истощенного раствора, т. е. такого, в котором уже никелировалось большое количество деталей. Более эффективен третий метод закрытия пор в никелевом покрытии. Суть его состоит в том, что никелированную деталь сразу после термообработки охлаждают до 120-150° и опускают в старый, долгостоявщий рыбий жир (не витаминизированный!), нагретый до 80-100°. В рыбьем жире деталь выдерживают 1-2 ч, после чего его излишки удаляют тряпкой. Пропитанным жиром деталям дают полежать в теплом месте 10-12 суток. Обработанные таким образом рыболовные крючки длительное время не ржавеют даже в морской воде. При химическом никелировании возможны некоторые неполадки в ходе процесса. Это касается никелирования всех металлов. Слабое газовыделение по всей поверхности детали является первым признаком малой концентрации в растворе гипофосфита натрия, и, следовательно, его необходимо добавить в раствор. Просветление раствора (нормальный раствор синего цвета) свидетельствует о понижении количества хлорного (сернокислого) никеля. Бурное газовыделение на стенках сосуда и отложение на них никеля (темно-серый налет) объясняется местным перегревом стенок сосуда. Чтобы избежать этого явления, раствор нагревают постепенно. Между сосудом и огнем желательно поместить какую-нибудь металлическую прокладку (круг). Серый или темный слой никеля на детали образуется при низкой концентрации третьих составляющих (компонент), т. е. солей, которые присутствуют в растворе, кроме хлористого (сернокислого) никеля и гипофосфита натрия. При плохой подготовке поверхности детали могут появиться вздутия и отслоения пленки никеля. И наконец, может быть и такое. Раствор составлен правильно, а процесс не идет. Это верный признак того, что в раствор попали соли других металлов. В этом случае делают новый раствор, исключая попадание каких-либо посторонних солей металлов. Никелевое покрытие можно пассивировать, после чего оно длительное время не тускнеет.

    * Все химреактивы при составлении рецептов для металлических покрытий должны быть чистыми (ч.) или химически чистыми (х.ч.), а вода — дистиллированной (можно использовать конденсат из бытовых холодильников, дождевую или снеговую воду).
    ** За 1 ч осаждается 8-10 мкм никеля.

    Ерлыкин Л.А. «Лаборатория рыболова» Москва «Физкультура и спорт» 1987 стр. 21-27


    Внимание, только СЕГОДНЯ!
  • Закладка Постоянная ссылка.

    Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *