Химическое оксидирование

Химическое оксидирование

Химическое оксидирование осуществляется следующим образом. Стальные детали погружают в раствор едкого натра и нитрита натрия, нагретого до температуры примерно 140 С и в этом растворе кипятят от 20 до 90 мин. Для повышения защитных свойств оксидной пленки ее покрывают минеральным маслом, проникающим в лоры покрытия.  [1]

Химическое оксидирование осуществляют в щелочных растворах следующего состава: 650 — 700 кг / м3 NaOH, 200 — 250 кг / ж3 NaNO2, 50 кг / м3 NaNO3 при 137 — 140 С в течение 20 — 30 мин для изделий из углеродистой стали и в течение 1 — 2 ч для изделий из легированной стали.  [2]

Химическое оксидирование имеет сравнительно ограниченное применение, так как получаемая окисная пленка по своим защитным свойствам уступает пленке, полученной электрохимически. Лишь для изделий сложной формы, оксидирование которых электрохимически зачастую затрудняется, применяют химический способ оксидирования.  [3]

Химическое оксидирование имеет сравнительно ограниченное применение, так как получаемая оксидная пленка по своим защитным свойствам уступает пленке, полученной электрохимически. Лишь для изделий Сложной конфигурации, оксидирование которых электрохимически затрудняется вследствие ряда причин ( недостаточная рассеивающая способность ванны и др.), более приемлем химический способ оксидирования.  [4]

Химическое оксидирование в настоящее время наиболее распространено вследствие простоты осуществления процесса по сравнению с электрохимическим способом, возможности получать оксидную пленку с достаточно высокими защитными свойствами. Основной недостаток химического способа оксидирования, по сравнению с электрохимическим, заключается в том, что уменьшаются размеры обрабатываемых изделий вследствие частичного растворения металла при оксидировании. Химическое оксидирование магниевых сплавов складывается из трех основных процессов: 1) подготовки изделий к оксидированию, 2) собственно процесса оксидирования, 3) последующей обработки изделий после оксидирования.  [5]

Химическое оксидирование имеет сравнительно ограниченное применение, так как получаемая окисная пленка по-своим защитным свойствам уступает пленке, полученной электрохимически. Лишь для изделий сложной конфигурации, оксидирование которых электрохимически затрудняется вследствие ряда лричин ( недостаточная рассеивающая способность ванны и др.), применяют химический способ оксидирования. Химическое оксидирование алюминия и его сплавов осуществляют в растворах, содержащих хроматы, в которых растворение алюминия; протекает весьма медленно.  [6]

Химическое оксидирование имеет сравнительно ограниченное применение, так как получаемая окисная пленка по своим защитным свойствам уступает пленке, полученной электрохимически. Лишь для изделий сложной формы, оксидирование которых электрохимически зачастую затрудняется, применяют химический способ оксидирования.  [7]

Химическое оксидирование состоит в том, что на поверхности детали образуется пленка, предохраняющая металл от коррозии. Состав пленки зависит от состава раствора, в котором производится оксидирование. Так, например, при обработке деталей из алюминиевых сплавов в чистой кипящей воде в течение 1 — 4 ч на поверхности детали образуются так называемые беспористые бомитные пленки толщиной 0 3 — 0 5 мк.  [8]

Химическое оксидирование может производиться в кипящем концентрированном растворе щелочи, содержащем окислители, или в растворе фосфорной кислоты.  [9]

Химическое оксидирование применяется для защиты от коррозии в легких условиях и для получения грунтовочного слоя под лакокрасочные покрытия.  [10]

Химическое оксидирование используется для защиты изделий от коррозии и для получения грунта под лакокрасочные покрытия. Толщина оксидных пленок полученных химическим путем, составляет 0 5 — 3 мкм. Пленки отличаются малой механической прочностью и поэтому неприменимы в тех случаях, когда требуется повышенная твердость или износостойкость поверхности изделий.  [11]

Химическое оксидирование можно проводить с применением горячего или холодного растворов, причем защитные свойства окисной пленки, полученной обоими способами, равноценны. В настоящее время способ оксидирования в горячих растворах применяется весьма редко, так как холодный способ имеет ряд преимуществ перед ним, а именно: отпадает необходимость нагревать раствор, а также нейтрализовать покрытие хромовым ангидридом, процесс протекает почти без выделения газов, создается возможность оксидировать узлы, имеющие узкие зазоры, а также детали, сваренные точечной и роликовой сваркой. При использовании холодного способа обезжиривание деталей перед оксидированием производят органическими растворителями.  [12]

Химическое оксидирование. получившее большее распространение, чем электрохимическое, складывается из трех основных процессов: 1) подготовки к оксидированию, 2) собственно оксидирования и 3) обработки после оксидирования.  [13]

Химическое оксидирование применяют при обработке деталей сложной конфигурации.  [14]

Химическое оксидирование обычно проводят для подготовки поверхности алюминиевых сплавов. Для оксидирования применяются растворы, содержащие хромовую, фосфорную кислоту, фтористый натрий, фторси-ликат натрия. Оксидирование проводится обычно при комнатной температуре в течение 10 — 20 мин.  [15]

Страницы:    9ensp;9ensp;1  9ensp;9ensp;2  9ensp;9ensp;3  9ensp;9ensp;4

Поделиться ссылкой:

Хим.Окс — Химическое оксидирование стали (воронение)

  • Шифры наносимых покрытий: Хим.Окс
  • Обрабатываемые стали: углеродистые стали
  • Габариты изделий: до 1000х1000х1000 мм. Масса до 3 т.
  • Нанесение покрытий на изделия любой сложности
  • ОТК, паспорт качества, работа в рамках ГОЗ

Общая информация

Химическое оксидирование металла ( воронение, холодное чернение, химическое оксидирование ) позволяет получать консервационное покрытие различных цветов (чаще всего — чёрного), которое вместе с красивым внешним видом деталей обеспечивает влагооталкивающую коррозионную защиту.

Химическое оксидирование позволяет длительное время хранить стальные изделия не опасаясь за случайное появление коррозии, а также снижать вероятность появления задиров в парах трения.
Химическое оксидирование не меняет размеров изделий, резьб, отверстий, зазоров — эта особенность бывает важной при обработке деталей с высокой точностью изготовления, благодаря чему возхможно нанесение покрытия на изделия с большим количеством отверстий высокими требованиями к допускам на покрытие.

Чаще всего химическому оксидированию подвергаются различные изделия:

режущий и металлообрабатывающий инструмент (режущий инструмент для станков – торцевые и концевые фрезы, инструмент с твердосплавными пластинами, сверла, спиральные сверла, кольцевые пилы, плашки, метчики, развертки и др.)
узлы оборудования (шпиндельные патроны, планшайбы, шестерни, высокопрочные звездочки в цепных передачах, втулки, резцедержатели, цанги, ручной инструмент, детали контрольно-измерительных и оптических приборов, штанги и др.)
другие детали и изделия различного назначения (насосного, декоративного, технологического, автомобильного и др.).

Производители подшипников, в том числе и подшипников для автопрома, обрабатывают корпуса, наружные кольца, обоймы, крышки. Химическое оксидирование не приводит к изменению размеров, зато, когда начинается приработка, наличие покрытия обеспечивает трущимся поверхностям отличные противозадирные свойства.

Процесс является незаменимым при обработке удлиненных деталей, так как низкая температура процесса (до 140 С) не приводит к термической деформации изделий.

Примечательно, что в последнее время наметилась тенденция использования чернения в качестве декоративного покрытия, с последующей обработкой защитным лаком для придания блеска и износостойкости.

Примеры деталей с химическим оксидированием

Химическое оксидирование

Химическое оксидирование

Технология химического оксидирования

Химическое оксидирование металла (чернение и воронение) это процесс получения красивого равномерного покрытия, как правило чёрного, обладающего декоративными и защитными свойствами на металлических изделиях (углеродистая сталь, алюминий) при комнатной температуре для хололдных процессов и 140 С — для процесса воронения.
Технологически процесс заключается в поочерёдном перемещении изделий в специальные растворы. Чернение металла не изменяет габаритных его размеров и позволяет получать равномерное черное покрытие на обработанных поверхностях, резьбе и глухих отверстиях.

Осуществляется холодное чернение за счет химической реакции изменяющей поверхность металла. От воронения (получения чёрного покрытия в горячем растворе кипящей при 140 градусах щёлочи) отличается экономичностью и безопасностью, хотя немного уступает ему по свойствам.

Процесс заключается в обезжиривании и последующем погружении в модификатор и в раствор для чернения. Дополнительная антикоррозийная обработка достигается путем окунания изделия в обезвоживающее масло или другие дегидрирующие (водооталкивающие) составы.

Осуществляется при цеховой температуре, окунанием деталей в химически малоагрессивный раствор, на их поверхности формируются чёрные химические конверсионные покрытия, которые по декоративности (глубоконасыщенный черный цвет) и

коррозионной стойкости практически не уступают покрытиям, получаемым при горячем щелочном оксидировании в нитратных растворах- Холодное чернение можно осущестлять для различных сталей: углеродистых и легированных, конструкционных и инструментальных, холодно- и горячекатаных, после ковки или штамповки, а также чугунов и порошковых металлов (при этом белый соляной налёт, присущий горячему оксидированию, не образуется; порошковые металлы и чугуны не выщелачиваются).

  • Одна и та же ванна может использоваться для чернения при комнатной температуре деталей из сталей и чугунов – разных марок и видов
  • Покрытия характеризуются отличными противозадирными свойствами
  • Приработка сопрягающихся деталей облегчается, свойства режущего инструмента улучшаются, срок его службы увеличивается
  • Посадочные размеры деталей и твердость сохраняются

Стоимость работ

Стоимость и сроки работ рассчитываются индивидуально исходя из текущего состояния изделий и требований к покрытию.
Для быстрой оценки стоимости работ — отправляйте запрос на электронную почту [email protected]
К запросу желательно приложить чертёж или эскиз деталей, а также указать их количество.

Химическое оксидирование

Химическое оксидирование

Для защиты от коррозии, а также придания изделиям из стали и чугуна более привлекательного вида, применяется оксидирование. Услуги по химическому оксидированию оказывает участок гальванических покрытий нашего предприятия, возможно проведение оксидирования с промасливанием и без. Главным преимуществом данного метода обработки является малая толщина образуемой пленки — после проведения оксидирования размеры обрабатываемых изделий практически не изменяются. Применять оксидирование можно к изделиям различных размеров: от небольших фланцев, до габаритных эллиптических днищ .

Виды оксидирования

На сегодняшний день оксидирование стали может производиться термическим, химическим и электрохимическим способом. Чаще всего на предприятиях используют химический метод, который может быть горячим или холодным.

Образование защитной оксидной пленки происходит после окунания обрабатываемого изделия в специальный химический состав, который может состоять из различных щелочей и окислителей. В результате взаимодействия стали с раствором, образуется оксид железа и натрия. Из этого соединения и происходит формирование защитного слоя. Толщина готовой оксидированной пленки определяется условиями, в которых протекает процесс. Цвет во многом зависит от состава обрабатываемой стали. Глубокий черный оттенок покрытия удается получить на изделиях, изготовленных из малоуглеродистых сталей, а высокоуглеродистые сплавы создают черную пленку с серым отливом. Для улучшения защитных свойств оксидной пленки изделие дополнительно подвергают промасливанию, эта операция также позволяет сделать черный цвет изделия более глубоким. Химическое оксидирование может происходить и без использования масла, но в этом случае защитные свойства оксидного покрытия будут более низкими. Покрытие, которое образуется после химического оксидирования, может быть финишным или использовано как основа под дальнейшую покраску.

Типовой процесс химического оксидирования

Для осуществления химического оксидирования необходима специальная футированная ванна, ее размер подбирается исходя из габаритов обрабатываемых изделий. Сам процесс состоит из нескольких обязательных операций:

  • Химическое обезжиривание. Раствор кальцинированной соды, едкого натра и тринатрий фосфата удаляет загрязнения с поверхности изделия.
  • Горячая промывка в воде при температуре 90°С.
  • Холодная промывка осуществляется в воде комнатной температуры.
  • Травление ингибированной соляной кислотой позволяет удалить остатки масляной пленки.
  • Холодная промывка.
  • Оксидирование. Для этого процесса могут быть использованы различные растворы, которые имеют запатентованный состав и чаще всего поставляются на предприятие в готовом виде.
  • Горячая промывка.
  • Холодная промывка производится несколько раз, чтобы с поверхности изделий окончательно удалить остатки щелочного раствора.
  • Обработка в мыльном растворе.
  • Окончательная сушка производится при температуре около 105°С.
  • Пропитка в индустриальном масле позволяет улучшить антикоррозийные свойства покрытия, а также придать готовому изделию более привлекательный внешний вид.

11. Пропитка в индустриальном масле позволяет улучшить антикоррозийные свойства покрытия, а также придать готовому изделию более привлекательный внешний вид. Холодный способ химического оксидирования на сегодняшний день является наиболее популярным методом обработки стальных и чугунных изделий.

Добавить комментарий

Наше предприятие изготавливает эллиптические днища ГОСТ 6533-78, емкостное оборудование различного типа, а также оказывает услуги по лазерному и плазменному раскрою металлопроката. Разместив заказ на нашем предприятии Вы можете лично контролировать процесс изготовления изделий на всех стадиях производства. Сотрудники нашего технологического отдела помогут разработать нестандартное оборудование согласно Вашему техническому заданию. Приглашаем к сотрудничеству!

Социальные сети

  • Химическое оксидирование
  • Химическое оксидирование
  • Химическое оксидирование
  • Химическое оксидирование

Пленки, полученные с помощью этих составов, имеют толщину около 2 мкм. Продолжительность процесса 5 мин при 18–19 °С и 1,5 мин при 50 °С. После оксидирования детали промывают в холодной проточной воде в течение 10–15 с, затем в 0,05 %–ном растворе хромового ангидрида или фосфорной кислоты при 35–50 °С в течение 10–15 с, после чего сушат при 38–66 °С. В случае плохого обезжиривания деталей, более высокой концентрации компонентов, более высокой температуры раствора и большей продолжительности оксидирования, а также сушки при температуре выше 60 °С покрытия могут получиться порошкообразными и легко осыпаются. Для приготовления составов для химического оксидирования расчетное количество компонентов растворяют при перемешивании в подогретой умягченной воде. Применение жесткой водопроводной воды нежелательно, так как содержащиеся в ней соли кальция адсорбируются оксидной пленкой, что приводит к возникновению белых пятен, ухудшающих защитные свойства оксидной пленки. Для получения качественной пленки необходимо строго соблюдать технологические режимы подготовительных операций и самого оксидирования. Ванны химического оксидирования периодически проверяют на содержание компонентов, входящих в их состав. В 1 л свежего раствора, содержащего фтор–силикат натрия (раствор 1), можно обрабатывать примерно 30 дм2 поверхности деталей без корректировки ванны. Ванну корректируют по мере образования слабоокрашенной пленки небольшими добавками хромового ангидрида (0,5–1,0 г/л) и фторсиликата натрия (0,1–0,25 г/л). При накоплении хромового ангидрида более 25 г/л и фторсиликата натрия более 6– 8 г/л ванну сменяют. В 1 л свежего раствора, содержащего фосфорную кислоту (растворы № 2 и № 3), можно обработать 50 дм2 поверхности деталей без корректировки ванны. По мере истощения ванны (это видно по образованию слабоокрашенной пленки) производят корректировку, добавляя небольшие количества компонентов, входящих в состав ванны (0,5 г/л фторида натрия или 1 мл/л фтористоводородной кислоты). Во избежание сползания пленки количество фторида натрия и фтористоводородной кислоты не должно превышать указанного в составе. Хромовый ангидрид и фосфорную кислоту добавляют, если их содержание в ванне соответственно менее 5 и 25 г/л. Возможные дефекты химического оксидирования в основном сводятся к образованию рыхлой пленки, легко стирающейся при протирке после высушивания, либо пленки с бледной окраской или со светлыми пятнами. Эти дефекты возникают главным образом при оксидировании в свежеприготовленном электролите вследствие большой его активности. После проработки ванны с бракованными деталями в течение 4–5 ч дефекты обычно устраняются. Дефекты могут также появиться при нарушении состава ванны, режима оксидирования, особенно температурного, продолжительности выдержки, истощения ванны, накопления в ней растворенного алюминия. Качество пленки проверяют по внешнему виду: она должна покрывать всю поверхность и прочно удерживаться на металле. При протирке салфеткой пленка не должна стираться. Цвет пленки, полученной в растворе, содержащем фторсиликат натрия, – от желто–золотистого до коричнево–золотистого. Цвет пленки, полученной в растворе, содержащем фосфорную кислоту, на деталях из алюминия и малолегированных сплавов – светло–зеленый, на легированных сплавах – более темный. По мере истощения раствора цвет пленки становится серо–зеленым. Светлые пятна на поверхности указывают на отсутствие пленки в этих местах. Детали с такими дефектами следует оксидировать заново.

ДРУГИЕ СПОСОБЫ ПОДГОТОВКИ ПОВЕРХНОСТИ.

На практике при защите алюминиевых сплавов не всегда представляется возможным применить для подготовки поверхности химическое оксидирование или анодное окисление. В таких случаях можно использовать и некоторые другие способы, нашедшие применение в промышленности. К ним относятся травление в различных кислотах и механическая обработка поверхности.

Травление в растворе фосфорной кислоты. При травлении поверхности алюминия и его сплавов в фосфорной кислоте происходит удаление с металла естественной оксидной пленки и образуются фосфатные покрытия, способствующие повышению адгезии лакокрасочных покрытий. Удовлетворительные результаты получаются после травления в растворе фосфорной кислоты с концентрацией 200–300 г/л при 40 °С в течение 5 мин [9]. Добавки хромового ангидрида, бихромата калия, фторси–ликата натрия, а также винной, щавелевой и лимонной кислот к раствору фосфорной кислоты способствуют повышению адгезии. Механизм влияния органических добавок на адгезию, по–видимому, заключается в снижении разрушающего действия фосфорной кислоты на алюминий, что способствует образованию на поверхности алюминия фосфатных пленок кристаллической структуры, отличающихся большой пористостью. Лучшие результаты получаются после обработки в растворах следующего состава [% (масс.)]:

Продолжительность обработки при 20 °С в первом растворе – 5 мин, во втором – 20 мин.
Травление в растворах серной, азотной и других кислот.
Адгезия лакокрасочных покрытий к алюминиевым сплавам повышается после обработки их в растворе серной кислоты с добавками бихромата натрия или калия, в частности в растворе следующего состава [% (масс.)]:

Серная кислота (конц.)

Бихромат натрия (калия)

Температура раствора 60.–65 «С, продолжительность обработки 20–30 мин. При применении этого способа подготовки, называемого пиклинг–процессом, достигается высокая адгезия грунтовок к поверхности алюминиевых сплавов. В ряде случаев применяется ускоренный пиклинг–процесс, заключающийся в предварительной подготовке поверхности деталей из алюминиевых сплавов в растворе следующего состава [%(масс.)]:

Фторид натрия (калия или аммония) или фтористоводородная кислота

Азотная кислота (конц.)

Поверхность обрабатывают этим раствором при комнатной температуре в течение 1 мин, а затем в растворе, применяемом для основного пиклинг–процесса, в течение 1 мин при 60–65 °С.

глава из книги И.И. Денкер, И.Д. Кулешова «Зашита изделий из аллюминия и его сплавов лакокрасочными покрытиями», Москва, Химия, 1985, стр. 23-27.

Химическое оксидирование

Оксидирование стали – все способы нанесения защитного покрытия

Под оксидированием стали понимают процедуру создания на металлических поверхностях оксидной пленки. Данная операция проводится для образования декоративных и защитных покрытий, а также специальных диэлектрических слоев на стальных изделиях.

Содержание

  1. Особенности химического оксидирования
  2. Анодное оксидирование – что оно собой представляет?
  3. Тонкости термического и плазменного оксидирования
  4. Как самостоятельно выполнить операцию?

1 Особенности химического оксидирования

Интересующий нас процесс можно выполнить по нескольким технологиям. Оксидирование принято делить на:

При химическом оксидировании поверхность изделий обрабатывают расплавами либо растворами хроматов, нитратов и других окислителей, что увеличивает антикоррозионную защиту металла. Подобная процедура может выполняться посредством применения щелочных или кислотных композиций.

Химическое оксидирование

Химическое оксидирование щелочного типа выполняется при температурах от 30 до 180 градусов. Для него используют щелочи и небольшое количество окислителей. После обработки деталей щелочными соединениями их обязательно промывают (весьма тщательно), а затем просушивают. В некоторых случаях заготовки, прошедшие процедуру оксидирования, дополнительно промасливают.

Для кислотной операции обычно применяют композиции, состоящие из 2–3 кислот – соляной, ортофосфорной, азотной, в которые добавляют в незначительных объемах соединения марганца и другие соединения. Температура такого способа оксидирования варьируется в пределах 30–100 градусов. Используется он чаще всего для декорирования и защиты от коррозии ржавления.

Химическое оксидирование

Химическое оксидирование любого из двух описанных типов позволяет получать в производственных и в домашних условиях пленки с достаточно высокими защитными характеристиками. При этом электрохимическая процедура предохранения стали от коррозионных явлений считается более эффективной. Именно поэтому химическое оксидирование для стальных изделий используется реже, нежели электрохимическое.

2 Анодное оксидирование – что оно собой представляет?

Анодный процесс (именно так обычно называют оксидирование электрохимического вида) осуществляется в твердых либо жидких электролитах. Он обеспечивает высоконадежные пленки следующих типов:

  • тонкослойные покрытия с толщиной от 0,1 до 0,4 микрометров;
  • электроизоляционные и износостойкие слои толщиной от 2–3 до 300 микрометров;
  • защитные покрытия от 0,3 до 15 микрометров;
  • специальные эмалеподобные слои (именуются в среде специалистов эматаль-покрытиями).

Химическое оксидирование

При анодировании поверхность окисляемого изделия характеризуется положительным потенциалом. Такая процедура рекомендована для защиты элементов интегральных микросхем, создания на полупроводниковых материалах, сплавах и сталях диэлектрических покрытий. При желании анодирование можно выполнить в домашних условиях, но при четком и безоговорочном соблюдении стандартов техники безопасности, так как для операции используются агрессивные соединения.

Частным случаем анодирования считается методика микродугового оксидирования, которая позволяет получать уникальные покрытия с высокими декоративными, теплостойкими, защитными, изоляционными и антикоррозионными параметрами. Микродуговой процесс осуществляется под действием переменного или импульсного тока в электролитах, имеющих слабощелочной характер.

Химическое оксидирование

Рассматриваемый способ нанесения специальных слоев обеспечивает толщину покрытий на уровне 200–250 микрометров. После выполнения операции поверхность изделия внешне похоже на керамику. Микродуговое оксидирование при наличии оборудования нередко производят в домашних условиях. Во время процесса в воздух не выделяется каких-либо опасных для человека веществ. По этой причине микродуговая обработка становится все более популярной среди домашних мастеров.

3 Тонкости термического и плазменного оксидирования

Термический процесс подразумевает, что оксидная пленка формируется на стали в атмосфере водяного пара либо иной кислородсодержащей среде при достаточно высоких температурах. В домашних условиях такую операцию не выполняют, так как она требует использования специальных печей, в которых железо либо низколегированные стали нагревают примерно до 350 градусов.

Химическое оксидирование

Если же речь идет об обработке средне- и высоколегированных сталей. температура в печи и вовсе должна равняться 650–700 градусам. Общая длительность термического оксидирования, как правило, составляет около часа.

Практически нереально выполнить в домашних условиях и плазменное оксидирование. Оно производится в низкотемпературной плазме, содержащей кислород. Плазменная среда при этом создается обычно посредством ВЧ- и СВЧ-разрядов, реже применяются разряды постоянного тока. Качество получаемых защитных пленок оксидов при плазменном процессе очень высокое. Поэтому его применяют для нанесения покрытий на ответственные детали:

  • кремниевые поверхности;
  • полупроводниковые изделия;
  • фотокатоды.

Химическое оксидирование

4 Как самостоятельно выполнить операцию?

Самый простой способ нанесения защитного покрытия на стальные изделия в домашних условиях не требует особых умений. При желании оксидирование своими руками может выполнить любой. Сначала деталь, которую планируется обработать, полируют либо зачищают. Затем с ее поверхности удаляют окислы (декапируют), используя для этих целей раствор (пятипроцентный) серной кислоты. Изделие помещают в него на 60 секунд.

Химическое оксидирование

После ванны с кислотой деталь необходимо промыть в теплой воде и подвергнуть ее пассивированию – пятиминутному кипячению, которое осуществляют в растворе водопроводной воды с 50 граммами обычного хозяйственного мыла (такое количество моющего средства рассчитано на один литр воды). Теперь поверхность полностью готова к оксидированию. Для реализации процедуры следует:

  • взять эмалированную емкость, не имеющую царапин и сколов;
  • налить в нее воду (один литр) и развести 50 граммов едкого натра;
  • поместить емкость на плиту, положить в нее изделие и подогреть смесь до 140–150 градусов.

Химическое оксидирование

Через полтора часа деталь можно доставать – оксидирование успешно завершено!

Трубогиб ручной ТР и другие марки – рассматриваем типы этого приспособления Химическое оксидирование

В этой статье мы рассмотрим различные механические трубогибы, которые можно использовать руками, применяя только мускульную.

Виды сварочных аппаратов – обзор популярных моделей Химическое оксидирование

Статья подскажет вам, какое специальное оборудование имеет смысл приобрести, если вы планируете производить работы по.

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Химическое оксидирование

Ленточнопильный станок (ленточные пилы)

  • Химическое оксидирование

    Цветные металлы и сплавы

    Химическое оксидирование

    Химическое оксидирование

    Химическое оксидирование

    Химическое оксидирование

    Химическое оксидирование

    Химическое оксидирование

    Конструкционные стали и сплавы

  • Химическое оксидирование

    Химическое оксидирование


    Внимание, только СЕГОДНЯ!
  • Закладка Постоянная ссылка.

    Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *